Skip to main content
Log in

Zorich conjecture for hyperelliptic Rauzy–Veech groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We describe the structure of hyperelliptic Rauzy diagrams and hyperelliptic Rauzy–Veech groups. In particular, this provides a solution of the hyperelliptic cases of a conjecture of Zorich on the Zariski closure of Rauzy–Veech groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. See the Appendix 1 below for a concrete example.

  2. On the other hand, Zorich conjecture implies Avila–Viana theorem on the pinching and twisting properties for Rauzy–Veech groups. In fact, Zariski density implies the pinching property by the work of Benoist [4], while the twisting property is automatic (because it has to do with minors of matrices). Hence, our proofs of Theorem 1.1 give new proofs of Avila–Viana theorem in the particular case of hyperelliptic Rauzy–Veech groups.

  3. A path is simple if it does not pass more than once through any vertex.

  4. If \(\gamma \) were of bottom type, we would glue \(\mathcal T\) to the top \(\alpha _b\)-side of \(P_\pi \).

  5. This is somewhat related to [13, Proposition 7.7].

  6. The braid group \(B_m\) is the fundamental group of the space \(\mathbb {C}^{\langle m\rangle }\) of configurations of finite subsets of \(\mathbb {C}\) of cardinality m based at an arbitrarily fixed configuration \(*\in \mathbb {C}^{\langle m\rangle }\).

  7. See [6, Sect. 9.2], for instance.

  8. An interesting consequence of this fact is the non-connectedness of the hyperelliptic Teichmüller spaces.

  9. That is, the entries of \(\rho (g)\in Sp(V)\) depend polynomially on the entires of \(g\in SL(2,\mathbb {R})\).

  10. Its eigenvalues are all real with distinct moduli.

  11. \(A(F)\cap F'=\{0\}\) for all A.B-invariant isotropic subspaces \(F\subset V\) and all A.B-invariant coisotropic subspaces \(F'\subset V\) with \(\text {dim}(F)+\text {dim}(F')=4\).

  12. Pinching elements whose characteristic polynomials have the largest possible Galois group among reciprocal integral polynomials (namely, hyperoctahedral groups).

References

  1. A’Campo, N.: Tresses, monodromie et le groupe symplectique. Comment. Math. Helv. 54(2), 318–327 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avila, A., Matheus, C., Yoccoz, J.-C.: On the Kontsevich-Zorich cocycle for the Veech–McMullen family of symmetric translation surfaces (in preparation)

  3. Avila, A., Viana, M.: Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture. Acta Math. 198, 1–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benoist, Y.: Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 7, 1–47 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eskin, A., Filip, S., Wright, A.: The algebraic hull of the Kontsevich–Zorich cocycle (preprint) (2017). arXiv:1702.02074

  6. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton, NJ (2012). ISBN: 978-0-691-14794-9

  7. Filip, S.: Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle. Duke Math. J. 166(4), 657–706 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Forni, G.: Deviation of Ergodic averages for area-preserving flows on surfaces of higher genus. Ann. Math. 155(1), 1–103 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matheus, C., Möller, M., Yoccoz, J.-C.: A criterion for the simplicity of the Lyapunov exponents of square-tiled surfaces. Invent. Math. 202(1), 333–425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Looijenga, E., Mondello, G.: The fine structure of the moduli space of abelian differentials in genus 3. Geom. Dedicata 169, 109–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rauzy, G.: Échanges d’intervalles et transformations induites. Acta Arith. 34(4), 315–328 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Witte-Morris, D.: Ratner’s theorems on unipotent flows. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2005)

    MATH  Google Scholar 

  13. Yoccoz, J.-C.: Interval exchange maps and translation surfaces. Homog. Flows Moduli Spaces Arith. 10, 1–69, Clay Math. Proc. (2010)

  14. Zorich, A.: How do the leaves of a closed 1-form wind around a surface? Pseudoperiodic topology, 135–178. American Mathematical Society Translational Series, vol. 2, p. 197. American Mathematical Society, Providence (1999)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Pascal Hubert and Martin Möller for pointing out to us the references [1, 11]. Also, the authors are grateful to the two referees for their careful reading of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Matheus.

Additional information

Communicated by Nalini Anantharaman.

Appendix A: A pinching and twisting group with small Zariski closure

Appendix A: A pinching and twisting group with small Zariski closure

Let \(\rho \) be the third symmetric power of the standard representation of \(SL(2,\mathbb {R})\). In concrete terms, \(\rho \) is constructed as follows. Consider the basis \(\mathcal {B} = \{X^3, X^2Y, XY^2, Y^3\}\) of the space V of homogenous polynomials of degree 3 on two variables X and Y. By letting \(g=\left( \begin{array}{ll} a &{} b \\ c &{} d \end{array}\right) \in SL(2,\mathbb {R})\) act on X and Y as \(g(X)=aX+cY\) and \(g(Y)=bX+dY\), we obtain an induced action \(\rho (g)\) on V whose matrix in the basis \(\mathcal {B}\) is

$$\begin{aligned} \rho \left( \begin{array}{ll} a &{} \quad b \\ c &{} \quad d \end{array}\right) = \left( \begin{array}{cccc} a^3 &{} \quad a^2 b &{} \quad a b^2 &{} \quad b^3 \\ 3 a^2 c &{} \quad a^2 d + 2 a b c &{} \quad b^2 c + 2 a b d &{} \quad 3 b^2 d \\ 3 a c^2 &{} \quad b c^2 + 2 a c d &{} \quad a d^2 + 2 b c d &{} \quad 3 b d^2 \\ c^3 &{} \quad c^2 d &{} \quad c d^2 &{} \quad d^3 \end{array}\right) \end{aligned}$$

Note that the faithful representation \(\rho \) is the unique irreducible four-dimensional representation of \(SL(2,\mathbb {R})\). Furthermore, the matrices \(\rho (g)\) preserve the symplectic structure on V associated to the matrix

$$\begin{aligned} J = \left( \begin{array}{llll} 0 &{} \quad 0 &{} \quad 0 &{} \quad -1 \\ 0 &{} \quad 0 &{} \quad 1/3 &{} \quad 0 \\ 0 &{} \quad -1/3 &{} \quad 0 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \end{array}\right) \end{aligned}$$

Indeed, a direct calculation shows that if \(g=\left( \begin{array}{ll} a &{} b \\ c &{} d \end{array}\right) \), then

$$\begin{aligned} {}^t\rho (g)\cdot J\cdot \rho (g) = \left( \begin{array}{llll} 0 &{} \quad 0 &{} \quad 0 &{} \quad -(a d - b c)^3 \\ 0 &{} \quad 0 &{} \quad \frac{(a d - b c)^3}{3} &{} \quad 0 \\ 0 &{} \quad - \frac{(a d - b c)^3}{3} &{} \quad 0 &{} \quad 0 \\ (a d - b c)^3 &{} \quad 0 &{} \quad 0 &{} \quad 0 \end{array}\right) \end{aligned}$$

where \({}^t\rho (g)\) stands for the transpose of \(\rho (g)\).

Denote by \(\mathcal {M}\) the group generated by the matrices

$$\begin{aligned} A = \rho \left( \begin{array}{ll} 1 &{} \quad 1 \\ 0 &{} \quad 1 \end{array}\right) = \left( \begin{array}{llll} 1 &{} \quad 1 &{} \quad 1 &{} \quad 1 \\ 0 &{} \quad 1 &{} \quad 2 &{} \quad 3 \\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 3 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 1\end{array}\right) \quad \text {and} \quad B = \rho \left( \begin{array}{ll} 1 &{} \quad 0 \\ 1 &{} \quad 1 \end{array}\right) = \left( \begin{array}{llll} 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 3 &{} \quad 1 &{} \quad 0 &{} \quad 0 \\ 3 &{} \quad 2 &{} \quad 1 &{} \quad 0 \\ 1 &{} \quad 1 &{} \quad 1 &{} \quad 1\end{array}\right) \end{aligned}$$

On one hand, the group \(\mathcal {M}\) has small Zariski closure.

Proposition A.1

The group \(\mathcal {M}\) is not Zariski dense in Sp(V).

Proof

Note that \(\rho \) is a polynomial Footnote 9 homomorphism from \(SL(2,\mathbb {R})\) to Sp(V). In particular, it follows that the image \(H=\rho (SL(2,\mathbb {R}))\) of \(\rho \) is Zariski closed in Sp(V): see, e.g., Corollary 4.6.5 in Witte-Morrris book [12]. Since \(SL(2,\mathbb {Z})\) is a Zariski dense subgroup of \(SL(2,\mathbb {R})\) generated by \(\left( \begin{array}{ll} 1 &{} 1 \\ 0 &{} 1 \end{array}\right) \) and \(\left( \begin{array}{ll} 1 &{} 0 \\ 1 &{} 1 \end{array}\right) \), we see that the Zariski closure of the group \(\mathcal {M}\) is \(H=\rho (SL(2,\mathbb {R}))\) (\(\simeq SL(2,\mathbb {R})\) because \(\rho \) is faithful). This proves the proposition (since H is a proper linear algebraic subgroup of Sp(V)). \(\square \)

On the other hand, the group \(\mathcal {M}\) is pinching and twisting in the sense of Avila–Viana (see [3] and [9, Sect. 2]):

Proposition A.2

The matrix \(A.B\in \mathcal {M}\) is a pinching elementFootnote 10 and the matrix \(A\in \mathcal {M}\) is twistingFootnote 11 with respect to the pinching element \(A.B\in \mathcal {M}\).

Proof

The first assertion follows from the fact that

$$\begin{aligned} 9+4\sqrt{5}> \frac{3+\sqrt{5}}{2}> \frac{3-\sqrt{5}}{2} > \frac{1}{9+4\sqrt{5}} \end{aligned}$$

are the eigenvalues of \(A.B\in \mathcal {M}\).

The second assertion is established by the following reasoning. The columns of

$$\begin{aligned} M = \left( \begin{array}{llll} -\frac{1}{4} + \frac{(9 + 4 \sqrt{5})}{4} &{} \quad 1 - \frac{(3 + \sqrt{5})}{2} &{} \quad 1 - \frac{(3 - \sqrt{5})}{2} &{} \quad -\frac{1}{4} + \frac{(9 - 4 \sqrt{5})}{4} \\ \frac{9}{8} + \frac{3(9 + 4 \sqrt{5})}{8} &{} \quad -2 + \frac{(3 + \sqrt{5})}{2} &{} \quad -2 + \frac{(3 - \sqrt{5})}{2} &{} \quad \frac{9}{8} + \frac{3(9 - 4 \sqrt{5})}{8} \\ -\frac{15}{8} + \frac{3(9 + 4 \sqrt{5})}{8} &{} \quad \frac{(3 + \sqrt{5})}{2} &{} \quad \frac{(3 - \sqrt{5})}{2} &{} \quad -\frac{15}{8} + \frac{3(9 - 4 \sqrt{5})}{8} \\ 1 &{} \quad 1 &{} \quad 1 &{} \quad 1 \end{array}\right) \end{aligned}$$

consist of eigenvectors of A.B. Thus, \(T=M^{-1}\cdot A\cdot M\) is the matrix of A in the corresponding basis of eigenvectors of A.B. By definition, A is twisting with respect to A.B when all entries of T and all of its \(2\times 2\) minors associated to Lagrangian planes are non-zero. As it turns out, this last property holds because a direct computation reveals that T and the matrix \(T^{\wedge 2}\) of \(2\times 2\) minors are given by:

$$\begin{aligned} T = \left( \begin{array}{llll} \frac{8(5 + 2 \sqrt{5})}{25} &{} \quad \frac{2(5 + 3 \sqrt{5})}{25} &{} \quad \frac{(5 + \sqrt{5})}{25} &{} \quad \frac{1}{( 5 \sqrt{5})} \\ -\frac{6(5 + 3 \sqrt{5})}{25} &{} \quad \frac{2(5 + \sqrt{5})}{25} &{} \quad \frac{7}{5 \sqrt{5}} &{} \quad -\frac{3(-5 + \sqrt{5})}{25} \\ \frac{3(5 + \sqrt{5})}{25} &{} \quad -\frac{7}{5 \sqrt{5}} &{} \quad -\frac{2(-5 + \sqrt{5})}{25} &{} \quad \frac{6(-5 + 3 \sqrt{5})}{25} \\ -\frac{1}{5 \sqrt{5}} &{} \quad \frac{(5 - \sqrt{5})}{25} &{} \quad \frac{2}{5} - \frac{6}{5 \sqrt{5}} &{} \quad -\frac{(8(-5 + 2 \sqrt{5})}{25} \end{array}\right) \end{aligned}$$

and

$$\begin{aligned} T^{\wedge 2} = \left( \begin{array}{llllll} \frac{56}{25} + \frac{24}{5 \sqrt{5}} &{} \quad \frac{32}{25} + \frac{16}{5 \sqrt{5}} &{} \quad \frac{18}{25} + \frac{6}{5 \sqrt{5}} &{} \quad \frac{6}{25} + \frac{2}{5 \sqrt{5}} &{} \quad \frac{2}{25} + \frac{2}{5 \sqrt{5}} &{} \quad \frac{1}{25} \\ -\frac{32}{25} - \frac{16}{5 \sqrt{5}} &{} \quad \frac{6}{25} + \frac{2}{5 \sqrt{5}} &{} \quad \frac{9}{25} + \frac{9}{5 \sqrt{5}} &{} \quad \frac{3}{25} + \frac{3}{5 \sqrt{5}} &{} \quad \frac{11}{25} &{} \quad -\frac{2}{25} + \frac{2}{5 \sqrt{5}} \\ \frac{6}{25} + \frac{2}{5 \sqrt{5}} &{} \quad -\frac{3}{25} - \frac{3}{5 \sqrt{5}} &{} \quad \frac{13}{25} &{} \quad -\frac{4}{25} &{} \quad -\frac{3}{25} + \frac{3}{5 \sqrt{5}} &{} \quad \frac{6}{25} - \frac{2}{5 \sqrt{5}} \\ \frac{18}{25} + \frac{6}{5 \sqrt{5}} &{} \quad -\frac{9}{25} - \frac{9}{5 \sqrt{5}} &{} \quad -\frac{36}{25} &{} \quad \frac{13}{25} &{} \quad -\frac{9}{25} + \frac{9}{5 \sqrt{5}} &{} \quad \frac{18}{25} - \frac{6}{5 \sqrt{5}} \\ -\frac{2}{25} - \frac{2}{5 \sqrt{5}} &{} \quad \frac{11}{25} &{} \quad \frac{9}{25} - \frac{9}{5 \sqrt{5}} &{} \quad \frac{3}{25} - \frac{3}{5 \sqrt{5}} &{} \quad \frac{6}{25} - \frac{2}{5 \sqrt{5}} &{} \quad -\frac{32}{25} + \frac{16}{5 \sqrt{5}} \\ \frac{1}{25} &{} \quad \frac{2}{25} - \frac{2}{5 \sqrt{5}} &{} \quad \frac{18}{25} - \frac{6}{5 \sqrt{5}} &{} \quad \frac{6}{25} - \frac{2}{5 \sqrt{5}} &{} \quad \frac{32}{25} - \frac{16}{5 \sqrt{5}} &{} \quad \frac{56}{25} - \frac{24}{5 \sqrt{5}} \end{array}\right) \end{aligned}$$

\(\square \)

In summary, these propositions say that \(\mathcal {M}\) is the desired group: it is pinching and twisting, but not Zariski dense in Sp(V).

Remark A.3

Observe that the group \(\rho (SL(2,\mathbb {Z}))\) does not contain Galois-pinchingFootnote 12 elements of Sp(V) in the sense of [9] because \(H=\rho (SL(2,\mathbb {R}))\) has rank 1. Alternatively, this fact can be shown as follows. A straightforward computation reveals that the characteristic polynomial of \(\rho (g)\) is

$$\begin{aligned} (x^2-\text {tr}(g)\det (g)x+\det (g)^3)\cdot (x^2 - \text {tr}(g)(\text {tr}(g)^2 - 3\det (g))x + \det (g)^3) \end{aligned}$$

and, consequently, the eigenvalues of \(\rho (g)\) are

$$\begin{aligned} \frac{1}{2}\det (g)\left( \text {tr}(g)\pm \sqrt{\text {tr}(g)^2 - 4 \det (g)}\right) , \end{aligned}$$

and

$$\begin{aligned} \frac{1}{2}\left( \text {tr}(g)(\text {tr}(g)^2 - 3\det (g)) \pm (\text {tr}(g)^2 - \det (g)) \sqrt{\text {tr}(g)^2 - 4 \det (g)}\right) . \end{aligned}$$

Therefore, the Galois group of the characteristic polynomial \(\rho (g)\), \(g\in SL(2,\mathbb {Z})\), is not the largest possible among reciprocal polynomials of degree four.

Remark A.4

It seems unlikely to find pinching and twisting monoids of symplectic matrices which are not Zariski dense in the context of the Kontsevich–Zorich cocycle. Indeed, Filip’s classification theorem [7] says that, modulo finite-index and compact factors, a Kontsevich–Zorich monodromy \(\mathcal {M}_V\) has Zariski closure \(\text {Sp}(V)\), \(\text {SU}(p,q)\), \(\text {SO}^*(2n)\), \(\wedge ^k \text {SU}(p,1)\) or some spin groups. Thus, all matrices in \(\mathcal {M}_V\) have two eigenvalues with the same modulus unless the Zariski closure of \(\mathcal {M}_V\) is isomorphic to \(\text {Sp}(V)\) modulo finite-index and compact factors. It follows that if \(\mathcal {M}_V\) is pinching, then \(\mathcal {M}_V\) is Zariski dense in \(\text {Sp}(V)\) modulo finite-index and compact factors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, A., Matheus, C. & Yoccoz, JC. Zorich conjecture for hyperelliptic Rauzy–Veech groups. Math. Ann. 370, 785–809 (2018). https://doi.org/10.1007/s00208-017-1568-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1568-5

Navigation