Skip to main content
Log in

Reaching generalized critical values of a polynomial

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(f: \mathbb K ^n \rightarrow \mathbb K \) be a polynomial, \(\mathbb K =\mathbb R , \,\mathbb C \). We give an algorithm to compute the set of generalized critical values. The algorithm uses a finite dimensional space of rational arcs along which we can reach all generalized critical values of \(f\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Benedetti, R., Risler, J.-J.: Real Algebraic and Semi-Algebraic Sets. Actualités Mathématiques. Hermann, Paris (1990)

    Google Scholar 

  3. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, E.M.G, vol. 36. Springer, Berlin (1998)

    Book  Google Scholar 

  4. Coste, M., de la Puente, M.J.: Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion. J. Pure Appl. Algebra 162(1), 23–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flenner, H., O’Carroll, L., Vogel, W.: Joins and Intersections. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  6. Goresky, M., MacPherson, R.: Stratified Morse Theory. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  7. Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Englewood Cliffs, NJ (1974)

    MATH  Google Scholar 

  8. Guning, R., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ (1965)

    Google Scholar 

  9. Hà, H.V., Lê, D.T.: Sur la topologie des polynômes complexes. Acta Math. Vietnam. 9(1), 21–32 (1984)

    MATH  MathSciNet  Google Scholar 

  10. Hà, H.V., Pham, T.S.: Minimizing polynomial functions. Acta Math. Vietnam. 32(1), 71–82 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Hà, H.V., Pham, T.S.: Global optimization of polynomials using the truncated tangency variety and sums of squares. SIAM J. Optim. 19(2), 941–951 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Iitaka, S.: Algebraic Geometry. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  13. Jelonek, Z.: The set of points at which a polynomial map is not proper. Ann. Polon. Math. 58, 259–266 (1993)

    MATH  MathSciNet  Google Scholar 

  14. Jelonek, Z.: Testing sets for properness of polynomial mappings. Math. Ann. 315, 1–35 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jelonek, Z.: On the Łojasiewicz exponent. Hokkaido J. Math. 35, 471–485 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jelonek, Z., Kurdyka, K.: On asymptotic critical values of a complex polynomial. J. für die reine und angewandte Mathematik 565, 1–11 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jelonek, Z., Kurdyka, K.: Quantitative generalized Bertini–Sard theorem for smooth affine varieties. Discret. Comput. Geom. 34, 659–678 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kurdyka, K.: Ensembles semi-algébriques symétriques par arcs. Math. Ann. 281, 445–462 (1988)

    Article  MathSciNet  Google Scholar 

  19. Parusiński, A.: On the bifurcation set of complex polynomial with isolated singularities at infinity. Compositio Math. 97, 369–384 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Parusiński, A., et al.: A note on singularities at infinity of complex polynomials. In: Budzyński, R. (ed.) Symplectic Singularities and Geometry of Gauge Fields, pp. 131–141. Banach Center Publications 39, Warszawa (1997)

  21. Raibaut, M.: Motivic Milnor fibers of a rational function. C. R. Math. Acad. Sci. Paris 350(9–10), 519–524 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Safey El Din, M.: Testing sign conditions on a multivariate polynomial and applications. Math. Comput. Sci. 1, 177–207 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Safey El Din, M.: Computing the global optimum of a multivariate polynomial over the reals. In: Jeffrey, D. (ed.) ISSAC 2008 Proceedings, Austria (Hagenberg) (2008)

  24. Scheiblechner, P.: On a generalization of Stickelberger’s theorem. J. Symb. Comput. 45(12), 1459–1470 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace \({\mathbb{C}}^2\). J. Math. Soc. Jpn. 26, 241–257 (1974)

    Article  MATH  Google Scholar 

  26. Thom, R.: Ensembles et morphismes, stratifiés. Bull. Am. Math. Soc. 75, 240–284 (1969)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the referees for their careful and patient reading of the first version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Kurdyka.

Additional information

Z. Jelonek was partially supported by Université de Savoie and by NCN(Poland), 2014–2017. K. Kurdyka was partially supported by ANR(France) grant STAAVF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelonek, Z., Kurdyka, K. Reaching generalized critical values of a polynomial. Math. Z. 276, 557–570 (2014). https://doi.org/10.1007/s00209-013-1213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1213-2

Keywords

Mathematics Subject Classification (1991)

Navigation