Skip to main content
Log in

Increased vascular eNOS and cystathionine-γ-lyase protein after 6 weeks oral administration of 3, 5, 7, 3′, 4′-pentamethoxyflavone to middle-aged male rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Effects of treatment of middle-aged male rats with 3, 5, 7, 3′, 4′-pentamethoxyflavone (PMF) on vascular and perivascular adipose tissue (PVAT) functions and blood chemistry were investigated. Rats received PMF (22 mg/kg), orally or vehicle, twice a day for 6 weeks. The PMF-treated rats had lower serum glucose, higher HDL-C levels, but no change in other parameters. Thoracic aortic and mesenteric rings of PMF treated rats produced lower maximal contraction to phenylephrine that was normalized by NG-nitro-L-arginine (L-NA) or endothelial removal. The aortic- and mesenteric rings of the PMF treated rats showed improved relaxation to acetylcholine, but not to glyceryl trinitrate, and had higher eNOS protein. DL-propargylglycine (PAG) caused greater increase in the baseline tension of the PMF-treated aortic ring and higher contraction to low concentrations of phenylephrine. PVAT lowered the contractile response of the L-NA pretreated aortic rings to phenylephrine for both groups, but PAG had no effect. The cystathionine-γ-lyase (CSE) protein of the thoracic rings, but not of the PVAT, shows increased expression after PMF treatment. Overall, PMF treatment of middle aged rats appeared to increase production of NO and H2S from the blood vessels by upregulating the expression of eNOS and CSE. PMF also decreased fasting serum glucose and increased HDL-C levels, with no toxicity to liver and kidney functions. Thus, PMF is a novel compound for possible use as a health product to prevent and/or to reduce the development of diabetes type II and/or cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akase T, Shimada T, Terabayashi S, Ikeya Y, Sanada H, Aburada M (2011) Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J Nat Med 65:73–80. doi:10.1007/s11418-010-0461-2

    Article  PubMed  Google Scholar 

  • Beltowski J, Jamroz-Wisniewska A, Tokarzewska D (2010) Hydrogen sulfide and its modulation in arterial hypertension and atherosclerosis. Cardiovasc Hematol Agents Med Chem 8:173–186. doi:10.2174/187152510792481207

    Article  CAS  PubMed  Google Scholar 

  • Bonini MG, Stadler K, Silva SO, Corbett J, Dore M, Petranka J, Fernandes DC, Tanaka LY, Duma D, Laurindo R, Mason RP (2008) Constitutive nitric oxide synthase activation is a significant route for nitroglycerin-mediated vasodilation. Proc Natl Acad Sci U S A 105:8569–8574. doi:10.1073/pnas.0708615105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussey C, Withers S, Edwards G, Heagerty A (2014) Obesity-related perivascular adipose tissue damage is not completely reversed following diet-induced weight loss. Heart 100(Suppl 3):A1–A138. doi:10.1136/heartjnl-2014-306118.202

    Article  Google Scholar 

  • Chang L, Milton H, Eitzman DT, Chen YE (2013) Paradoxical roles of perivascular adipose tissue in atherosclerosis and hypertension. Circ J 77:11–18

    Article  PubMed  Google Scholar 

  • Chaturapanich G, Chaiyakul S, Verawatnapakul V, Pholpramool C (2008) Effects of Kaempferia parviflora extracts on reproductive parameters and spermatic blood flow in male rats. Reproduction 136:515–522. doi:10.1530/REP-08-0069

    Article  CAS  PubMed  Google Scholar 

  • Chaturapanich G, Chaiyakul S, Verawatnapakul V, Yimlamai T, Pholpramool C (2011) Enhancement of aphrodisiac activity in male rats by ethanol extract of Kaempferia parviflora and exercise training. Andrologia 44(Suppl.1):323–328. doi:10.1111/j.1439-0272.2011.01184.x

    PubMed  Google Scholar 

  • Chongsa W, Kanokwiroon K, Jansakul C (2015) Effects of 6 weeks oral administration of Phyllanthus acidus leaf water extract on the vascular functions of middle-aged male rats. J Ethnopharmacol 156:162–174. doi:10.1016/j.jep.2015.10.10.030

    Google Scholar 

  • Dubrovska G, Verlohren S, Luft FC, Gollasch M (2004) Mechanisms of ADRF release from rat aortic adventitial adipose tissue. Am J Physiol Heart Circ Physiol 286:H1107–H1113

    Article  CAS  PubMed  Google Scholar 

  • El Assar M, Angulo J, Vallejo S, Peiro C, Sanchez-Ferrer CF, Rodriguez-Manas L (2012) Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 3:132. doi:10.3389/fphys.2012.00132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, Liu X, Geng B (2009) Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens 27:2174–2185. doi:10.1097/HJH.0b013e328330a900

    Article  CAS  PubMed  Google Scholar 

  • Galvez-Prieto B, Somoza B, Gil-Ortega M, Garcia-Prieto CF, de Las Heras AI, Gonzalez MC, Arribas S, Aranguez I, Bolbrinker J, Kreutz R, Ruiz-Gayo M, Fernandez-Alfonso MS (2012) Anticontractile effect of perivascular adipose tissue and leptin are reduced in hypertension. Front Pharmacol 3:103. doi:10.3389/fphar.2012.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Ortega M, Stucchi P, Guzman-Ruiz R, Cano V, Arribas S, Gonzalez MC, Ruiz-Gayo M, Fernandez-Alfonso MS, Somoza B (2010) Adaptative nitric oxide over production in perivascular adipose tissue during early diet-induced obesity. J Endocrinol 151:3299–3306. doi:10.1210/en.2009-1464

    Article  CAS  Google Scholar 

  • Herrera MD, Mingorance C, Rodriguez-Rodriguez R, Alvarez de Sotomayor M (2010) Endothelial dysfunction and aging: an update. Ageing Res Rev 9:142–152. doi:10.1016/j.arr.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  • Hongo K, Nakagomi T, Kassell NF, Sasaki T, Lehman M, Vollmer DG, Tsukahara T, Ogawa H, Torner J (1988) Effects of aging and hypertension on endothelium-dependent vascular relaxation in rat carotid artery. Stroke 19:892–897. doi:10.1161/01.STR.19.7. 892

    Article  CAS  PubMed  Google Scholar 

  • Horigome S, Yoshida I, Tsuda A, Harada T, Yamaguchi A, Yamazaki K, Inohana S, Isagawa S, Kibune N, Satoyama T, Katsuda S, Suzuki S, Watai M, Hirose N, Mitsue T, Shirakawa H, Komai M (2014) Identification and evaluation of anti-inflammatory compounds from Kaempferia parviflora. Biosci Biotechnol Biochem 78:851–860. doi:10.1080/09168451.2014.905177

    Article  CAS  PubMed  Google Scholar 

  • Horikawa T, Shimada T, Okabe Y, Kinoshita K, Koyama K, Miyamoto K, Ichinose K, Takahashi K, Aburada M (2012) Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation. Biol Pharm Bull 35:686–692. doi:10.1248/bpb.35.686

    Article  CAS  PubMed  Google Scholar 

  • Hosoki R, Matsuk N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531. doi:10.1006/bbrc.1997.6878

    Article  CAS  PubMed  Google Scholar 

  • Jakhar R, Paul S, Park YR, Han J, Kang SC (2014) 3,5,7,3',4'-pentamethoxyflavone, a quercetin derivative protects DNA from oxidative challenges: potential mechanism of action. J Photochem Photobiol B131:96–103. doi:10.1016/j.jphotobiol.2014.01.003

    Article  Google Scholar 

  • Jansakul C, Tachanaparuksa K, Mulvany MJ, Sukpondma Y (2012) Relaxant mechanisms of 3, 5, 7, 3', 4'-pentamethoxyflavone on isolated human cavernosum. Eur J Pharmacol 691:235–244. doi:10.1016/j.ejphar.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Horiguchi-Babamoto E, Suzuki M, Makihara H, Tomozawa H, Tsubata M, Shimada T, Sugiyama K, Aburada M (2015) Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue. J Nat Med. doi:10.1007/s11418-015-0936-2

    Google Scholar 

  • Koga T, Takata Y, Kobayashi K, Takishita S, Yamashita Y, Fujishima M (1989) Age and hypertension promote endothelium-dependent contractions to acetylcholine in the aorta of the rat. Hypertension 14:542–548. doi:10.1161/01.HYP.14.5.542

    Article  CAS  PubMed  Google Scholar 

  • Lakatta EG (2002) Cardiovascular ageing in health sets the stage for cardiovascular disease. Heart Lung Circ 11(2):76–91. doi:10.1046/j.1444-2892.2002.00126.x

    Article  PubMed  Google Scholar 

  • Lakatta EG (2015) So! What's aging? Is cardiovascular aging a disease? J Mol Cell Cardiol 83:1–13. doi:10.1016/j.yjmcc.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohn M, Dubrovska G, Lauterbach B, Luft FC, Gollasch M, Sharma AM (2002) Periadventitial fat releases a vascular relaxing factor. FASEB J 16:1057–1063. doi:10.1096/fj.02-0024com

    Article  PubMed  Google Scholar 

  • Lu C, Su LY, Lee RM, Gao YJ (2011) Alterations in perivascular adipose tissue structure and function in hypertension. Eur J Pharmacol 656:68–73. doi:10.1016/j.ejphar.2011.01. 023

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Ma S, He H, Yang D, Chen X, Luo Z, Liu D, Zhu Z (2010) Perivascular fat-mediated vascular dysfunction and remodeling through the AMPK/mTOR pathway in high-fat diet-induced obese rats. Hypertens Res 33:446–453. doi:10.1038/hr.2010.11

    Article  CAS  PubMed  Google Scholar 

  • Malakul W, Ingkaninan K, Sawasdee P, Woodman OL (2011) The ethanolic extract of Kaempferia parviflora reduces ischaemic injury in rat isolated hearts. J Ethnopharmacol 137:184–191. doi:10.1016/j.jep.2011.05.004

    Article  PubMed  Google Scholar 

  • Matsuda H, Nakamura S, Yoshikawa M (2014) Search for new type of PPARγ agonist like anti-diabetic compounds from medicinal plants. Biol Pharm Bull 37:884–891. doi:10.1248/bpb.b14-00037

    Article  CAS  PubMed  Google Scholar 

  • Matsushita M, Yoneshiro T, Aita S, Kamiya T, Kusaba N, Yamaguchi K, Takagaki K, Kameya T, Sugie H, Saito M (2015) Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue. J Nutr Sci Vitaminol (Tokyo) 61:79–83. doi:10.3177/jnsv.61.79

    Article  CAS  Google Scholar 

  • Melrose HM, Heagerty A, Edwards G, Austin C (2013) Aging modulates the anti-contractile effects of perivascular adipose tissue; the role of nitric oxide. Proceedings of the Physiological Society, Proc 37th IUPS, PCC407.

  • Moncada S, Rees DD, Schulz R, Palmer RM (1991) Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Nat Acad Sci USA 88:2166–2170. doi:10.1073/pnas.88.6.2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41:19–26. doi:10.1161/01. RES.41.1.19

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Deguchi T, Fujita T, Matsuda H (2013) Improvement in blood fluidity by Kaempferia parviflora rhizome. J Nat Med 67:719–724. doi:10.1007/s11418-012-0729-9

    Article  CAS  PubMed  Google Scholar 

  • Nakao K, Murata K, Deguchi T, Itoh K, Fujita T, Higashino M, Yoshioka Y, Matsumura S, Tanaka R, Shinada T, Ohfune Y, Matsuda H (2011) Xanthine oxidase inhibitory activities and crystal structures of methoxyflavones from Kaempferia parviflora rhizome. Biol Pharm Bull 34:1143–1146. doi:10.1248/bpb.34.1143

    Article  CAS  PubMed  Google Scholar 

  • Oelze M, Kroller-Schon S, Steven S, Lubos E, Doppler C, Hausding M, Tobias S, Brochhausen C, Li H, Torzewski M, Wenzel P, Bachschmid M, Lackner KJ, Schulz E, Munzel T, Daiber A (2014) Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension 63:390–396. doi:10.1161/HYPERTENSIONAHA. 113.01602

    Article  CAS  PubMed  Google Scholar 

  • Redheuil A, Yu WC, Wu CO, Mousseaux E, de Cesare A, Yan R, Kachenoura N, Bluemke D, Lima JA (2010) Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension 55:319–326. doi:10.1161/HYPERTENSIONAHA.109.141275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Manas L, El-Assar M, Vallejo S, Lopez-Doriga P, Solis J, Petidier R, Montes M, Nevado J, Castro M, Gomez-Guerrero C, Peiro C, Sanchez-Ferrer CF (2009) Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell 8:226–238. doi:10.1111/j.1474-9726.2009.00466.x

    Article  CAS  PubMed  Google Scholar 

  • Rujjanawate C, Kanjanapothi D, Amornlerdpison D, Pojanagaroon S (2005) Anti-gastric ulcer effect of Kaempferia parviflora. J Ethnopharmacol 102:120–122. doi:10.1016/j.jep.2005.03.035

    Article  CAS  PubMed  Google Scholar 

  • Sae-wong C, Tansakul P, Tewtrakul S (2009) Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. J Ethnopharmacol 124:576–580. doi:10.1016/j.jep.2009.04.059

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Nagai E, Harasawa Y, Watanabe M, Negishi K, Akase T, Sai Y, Miyamoto K, Aburada M (2011) Salacia reticulata inhibits differentiation of 3T3-L1 adipocytes. J Ethnopharmacol 136:67–74. doi:10.1016/j.jep.2011.04.012

    Article  PubMed  Google Scholar 

  • Sudwan P, Saenphet K, Saenphet S, Suwansirikul S (2006) Effect of Kaempferia parviflora Wall.ex. Baker on sexual activity of male rats and its toxicity. Southeast Asian J Trop Med Public Health 37(Suppl. 3):210–215

    PubMed  Google Scholar 

  • Sun X, Hou N, Han F, Guo Y, Hui Z, Du G, Zhang Y (2013) Effect of high free fatty acids on the anti-contractile response of perivascular adipose tissue in rat aorta. J Mol Cell Cardiol 63:169–174. doi:10.1016/j.yjmcc.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  • Szasz T, Carrillo-Sepuveda MA, Webb RC (2012) Aging decrease the anticontractile effect of perivascular adipose tissue in the mouse aorta. Hypertension 60:A260

    Article  Google Scholar 

  • Tewtrakul S, Subhadhirasakul S (2008) Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells. J Ethnopharmacol 120:81–84. doi:10.1016/j.jep.2008.07.033

    Article  CAS  PubMed  Google Scholar 

  • Wenzel P, Schuhmacher S, Kienhofer J, Muller J, Hortmann M, Oelze M, Schulz E, Treiber N, Kawamoto T, Scharffetter-Kochanek K, Munzel T, Burkle A, Bachschmid MM, Daiber A (2008) Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res 80:280–289. doi:10.1093/cvr/cvn182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wutythamawech W (1997) Encyclopedia of Thai Herbs I. 1st ed. Peth 69 printing, Bangkok, 288p.

  • Yazdanyar A, Newman AB (2009) The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med 25(563-577):vii. doi:10.1016/j.cger.2009.07.007

    Google Scholar 

  • Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75:89–92. doi:10.1016/j.fitote.2003.08.017

    Article  CAS  PubMed  Google Scholar 

  • Yorsin S, Kanokwiroon K, Radenahmad N, Jansakul C (2014) Effects of Kaempferia parviflora rhizomes dichloromethane extract on vascular functions in middle-aged male rat. J Ethnopharmacol 156:162–174. doi:10.1016/j.jep.2014.08.020

    Article  PubMed  Google Scholar 

  • Yorsin S, Sukpondma Y, Jansakul C (2015) Vasorelaxant effects of 3,5,7,3',4'-pentamethoxyflavone isolated from Kaempferia parviflora: partly stimulating the release of NO and H2S by rat thoracic aorta. J Physiol Biomed Sci 28:5–14

    Google Scholar 

  • Yoshino S, Kim M, Awa R, Kuwahara H, Kano Y, Kawada T (2014) Kaempferia parviflora extract increases energy consumption through activation of BAT in mice. Food Sci Nutr 2:634–637. doi:10.1002/fsn3.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. The authors thank Prof. Poungpen Sirirugsa, Department of Biology, Faculty of Science, for her kind help in identifying the plant; the Central Equipment Unit, Faculty of Science, for facilitating use of the HPLC equipment; Miss Srisurat Duangsai for technical assistance, Dr. Brian Hodgson for English assistance, and Prof. Michael J. Mulvany, Aarhus University, Denmark, for his valuable comments and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaweewan Jansakul.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

ESM 2

(DOCX 458 kb)

ESM 3

(DOCX 25 kb)

ESM 4

(DOCX 26 kb)

ESM 5

(DOCX 25 kb)

ESM 6

(DOCX 26 kb)

ESM 7

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yorsin, S., Kanokwiroon, K., Radenahmad, N. et al. Increased vascular eNOS and cystathionine-γ-lyase protein after 6 weeks oral administration of 3, 5, 7, 3′, 4′-pentamethoxyflavone to middle-aged male rats. Naunyn-Schmiedeberg's Arch Pharmacol 389, 1183–1194 (2016). https://doi.org/10.1007/s00210-016-1280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1280-0

Keywords

Navigation