Skip to main content
Log in

Neighborhood filters and PDE’s

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Denoising images can be achieved by a spatial averaging of nearby pixels. However, although this method removes noise it creates blur. Hence, neighborhood filters are usually preferred. These filters perform an average of neighboring pixels, but only under the condition that their grey level is close enough to the one of the pixel in restoration. This very popular method unfortunately creates shocks and staircasing effects. In this paper, we perform an asymptotic analysis of neighborhood filters as the size of the neighborhood shrinks to zero. We prove that these filters are asymptotically equivalent to the Perona–Malik equation, one of the first nonlinear PDE’s proposed for image restoration. As a solution, we propose an extremely simple variant of the neighborhood filter using a linear regression instead of an average. By analyzing its subjacent PDE, we prove that this variant does not create shocks: it is actually related to the mean curvature motion. We extend the study to more general local polynomial estimates of the image in a grey level neighborhood and introduce two new fourth order evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: A new approach to quasilinear parabolic problems. In: International Conference on Differential Equations, 2005

  2. Andreu F., Ballester C., Caselles V., Mazon J. M. (2001) Minimizing Total Variation Flow. Differ. Integral Equations 14(3): 321–360

    MATH  Google Scholar 

  3. Di Zenzo S. (1986) A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 33, 116–125

    Article  MATH  Google Scholar 

  4. Esedoglu S. (2001) An analysis of the Perona–Malik scheme. Commun. Pure Appl. Math. 54, 1442–1487

    Article  MATH  MathSciNet  Google Scholar 

  5. Guichard F., Morel J. M. (2003) A note on two classical enhancement filters and their associated PDE’s. Int. J. Comput. Vis. 52(2–3): 153–160

    Article  Google Scholar 

  6. Harten A., Enquist B., Osher S., Chakravarthy S. (1987) Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303

    Article  MATH  MathSciNet  Google Scholar 

  7. Kichenassamy S. (1997) The Perona–Malik paradox. SIAM J. Appl. Math. 57(2): 1328–1342

    Article  MATH  MathSciNet  Google Scholar 

  8. Kimia B.B., Tannenbaum A., Zucker S.W. (1992) On the evolution of curves via a function of curvature I the classical case. J. Math. Anal. Appl. 163(2): 438–458

    Article  MATH  MathSciNet  Google Scholar 

  9. Kimmel R., Malladi R., Sochen N. (2000) Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2): 111–129

    Article  MATH  Google Scholar 

  10. Kindermann, S., Osher, S., Jones, P.: Deblurring and denoising of images by nonlocal functionals. UCLA Computational and Applied Mathematics Reports 04–75, 2004

  11. Kornprobst, P.: Contributions la Restauration d’Images et l’Analyse de Sequences: Approches Variationnelles et Solutions de Viscosite. PhD thesis, Universite de Nice-Sophia Antipolis, 1998

  12. Kramer H.P., Bruckner J.B. (1975) Iterations of a non-linear transformation for enhancement of digital images. Pattern Recogn. 1–2, 53–58

  13. Lee J.S. (1983) Digital image smoothing and the sigma filter. Comput. Vis. Graph. Image Process. 24, 255–269

    Article  Google Scholar 

  14. Masnou, S.: Filtrage et désocclusion d’images par méthodes d’ensembles de niveau. PhD Dissertation, Université Paris-IX Dauphine, 1998

  15. Osher S., Rudin L. (1990) Feature oriented image enchancement using shock filters. SIAM J Numer. Anal. 27, 919–940

    Article  MATH  Google Scholar 

  16. Perona P., Malik J. (1990) Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639

    Article  Google Scholar 

  17. Rudin L., Osher S., Fatemi E. (1992) Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268

    Article  MATH  Google Scholar 

  18. Saint-Marc P., Chen J.S., Medioni G. (1991) Adaptive smoothing: a general tool for early vision. IEEE Trans. Pattern Anal. Mach. Intell. 13(6): 514

    Article  Google Scholar 

  19. Sapiro G., Ringach D.L. (1996) Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5(11): 1582–1585

    Article  Google Scholar 

  20. Polzehl, J., Spokoiny, V.: Varying coefficient regression modeling. Preprint, Weierstrass Institute for Applied Analysis and Stochastics pp 818, 2003

  21. Schavemaker J.G.M., Reinders M.J.T., Gerbrands J.J., Backer E. (2000) Image sharpening by morphological filtering. Pattern Recogn. 33, 997–1012

    Article  Google Scholar 

  22. Sethian J. (1985) Curvature and the evolution of fronts. Commun. Math. Phys. 101, 487–499

    Article  MATH  MathSciNet  Google Scholar 

  23. Smith S.M., Brady J.M. (1997) Susan—a new approach to low level image processing. Int. J. Comput. Vis. 23(1): 45–78

    Article  Google Scholar 

  24. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision pp. 839–46, 1998

  25. Weickert J. (1998) Anisotropic Diffusion in Image Processing. Tuebner, Stuttgart

    MATH  Google Scholar 

  26. Yaroslavsky L.P. (1985) Digital Picture Processing—An Introduction. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Buades.

Additional information

This work has been partially financed by the Centre National d’Etudes Spatiales (CNES), the Office of Naval Research under grant N00014-97-1-0839, the Ministerio de Ciencia y Tecnologia under grant MTM2005-08567. During this work, the first author had a fellowship of the Govern de les Illes Balears for the realization of his PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buades, A., Coll, B. & Morel, JM. Neighborhood filters and PDE’s. Numer. Math. 105, 1–34 (2006). https://doi.org/10.1007/s00211-006-0029-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0029-y

Mathematics Subject Classification

Navigation