Skip to main content
Log in

Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we present an analysis of a numerical method for a degenerate partial differential equation, called the Black–Scholes equation, governing American and European option pricing. The method is based on a fitted finite volume spatial discretization and an implicit time stepping technique. The analysis is performed within the framework of the vertical method of lines, where the spatial discretization is formulated as a Petrov–Galerkin finite element method with each basis function of the trial space being determined by a set of two-point boundary value problems. We establish the stability and an error bound for the solutions of the fully discretized system. Numerical results are presented to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou Y. (2005). An inverse problem for a parabolic variational inequality arising in volatility calibration with American options. SIAM J. Control Optim. 43(5): 1583–1615

    Article  MATH  MathSciNet  Google Scholar 

  2. Allegretto W., Lin Y. and Yang H. (2001). Finite element error estimates for a nonlocal problem in American option valuation. SIAM J. Numer. Anal. 39(3): 834–857 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  3. Angermann L. (1995). Error estimates for the finite-element solution of an elliptic singularly perturbed problem. IMA J. Num. Anal. 15: 161–196

    Article  MATH  MathSciNet  Google Scholar 

  4. Angermann L. and Wang S. (2003). Three-dimensional exponentially fitted conforming tetrahedral finite elements for the semiconductor continuity equations. Appl. Numer. Math. 46: 19–43

    MATH  MathSciNet  Google Scholar 

  5. Barles G. (1997). Convergence of numerical schemes for degenerate parabolic equations arising in finance theory. In: Rogers, L.C.G. and Taley, D. (eds) Numerical Methods in Finance, pp 1–21. Cambridge University Press, Cambridge

    Google Scholar 

  6. Barles G., Daher Ch. and Romano M. (1995). Convergence of numerical schemes for problems arising in finance theory. Math. Models Methods Appl. Sci. 5: 125–143

    Article  MATH  MathSciNet  Google Scholar 

  7. Bensoussan, A., Lions, J.-L.: Applications of variational inequalities in stochastic control. In: Studies in Mathematics and its Applications. vol. 12, North-Holland Publishing Co., Amsterdam (1982) Translated from the French

  8. Benth F.E., Karlsen K.H. and Reikvam K. (2004). A semilinear Black and Scholes partial differential equation for valuing American options: approximate solutions and convergence. Interfaces Free Bound. 6(4): 379–404

    Article  MATH  MathSciNet  Google Scholar 

  9. Black F. and Scholes M. (1973). The pricing of options and corporate liabilities. J. Polit. Econ. 81: 637–659

    Article  Google Scholar 

  10. Courtadon G. (1882). A more accurate finite difference approximation for the valuation of options. J. Financ. Econ. Quant. Anal. 17: 697–703

    Article  Google Scholar 

  11. Cox J.C., Ross S. and Rubinstein M. (1979). Option pricing: a simplified approach. J. Financ. Econ. 7: 229–264

    Article  MATH  Google Scholar 

  12. Forsyth P.A. and Vetzal K.R. (2002). Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23(6): 2095–2122 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. Glowinski R. (1984). Numerical Methods for Nonlinear Variational Problems. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  14. Han H. and Wu X. (2003). A fast numerical method for the Black–Scholes equation of American options. SIAM J. Numer. Anal. 41(6): 2081–2095

    Article  MATH  MathSciNet  Google Scholar 

  15. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite element method for hemivariational inequalities. In: Nonconvex Optimization and its Applications, vol. 35, Kluwer, Dordrecht (1999)

  16. Holtz, M., Kunoth, A.: B-spline-based monotone multigrid methods (2004) (Submitted)

  17. Hull J.C. and White A. (1988). The use of control variate technique in option pricing. J. Financ. Econ. Quant. Anal. 23: 237–251

    Article  Google Scholar 

  18. Hull J.C. and White A. (1996). Hull-White on Derivatives. Risk Publications, London

    MATH  Google Scholar 

  19. Jaillet P., Lamberton D. and Lapeyre B. (1990). Variational inequalities and the pricing of American options. Acta Appl. Math. 21(3): 263–289

    Article  MATH  MathSciNet  Google Scholar 

  20. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic New York, (1980)

  21. Kufner A. (1985). Weighted Sobolev spaces. Wiley, New York Translated from the Czech

    MATH  Google Scholar 

  22. Miller J.J.H. and Wang S. (1994). A new non-conforming Petrov-Galerkin method with triangular elements for a singularly perturbed advection-diffusion problem. IMA J. Numer. Anal. 14: 257–276

    Article  MATH  MathSciNet  Google Scholar 

  23. Miller J.J.H. and Wang S. (1994). An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems. J. Comput. Phys. 115: 56–64

    Article  MATH  MathSciNet  Google Scholar 

  24. Oosterlee, C.W.: On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal. 15, 165–185 (electronic) (2003). In: 10th Copper mountain conference on multigrid methods (Copper Mountain, CO, 2001)

    Google Scholar 

  25. Ortega J.M. and Rheinboldt W.C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York

    MATH  Google Scholar 

  26. Rogers L.C.G. and Tallay D. (1997). Numerical Methods in Finance. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Schwartz E. (1977). The valuation of warrants: implementing a new approach. J. Financ. Econ. 13: 79–93

    Article  Google Scholar 

  28. Vázquez C. (1998). An upwind numerical approach for an American and European option pricing model. Appl. Math. Comput. 97(2–3): 273–286

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang S. (2004). A novel fitted finite volume method for the Black–Scholes equation governing option pricing. IMA J. Numer. Anal. 24: 699–720

    Article  MathSciNet  Google Scholar 

  30. Wang S., Yang X.Q. and Teo K.L. (2006). A power penalty method for a linear complementarity problem arising from American option valuation. J. Optimz. Theory App. 129(2): 227–254

    Article  MATH  MathSciNet  Google Scholar 

  31. Wilmott P., Dewynne J. and Howison S. (1993). Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford

    Google Scholar 

  32. Zvan R., Forsyth P.A. and Vetzal K.R. (1998). Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2): 199–218

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Angermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angermann, L., Wang, S. Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing. Numer. Math. 106, 1–40 (2007). https://doi.org/10.1007/s00211-006-0057-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0057-7

Mathematics Subject Classification (2000)

Navigation