Skip to main content
Log in

An adaptive homotopy approach for non-selfadjoint eigenvalue problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper presents adaptive algorithms for eigenvalue problems associated with non-selfadjoint partial differential operators. The basis for the developed algorithms is a homotopy method which departs from a well-understood selfadjoint problem. Apart from the adaptive grid refinement, the progress of the homotopy as well as the solution of the iterative method are adapted to balance the contributions of the different error sources. The first algorithm balances the homotopy, discretization and approximation errors with respect to a fixed stepsize τ in the homotopy. The second algorithm combines the adaptive stepsize control for the homotopy with an adaptation in space that ensures an error below a fixed tolerance ε. The outcome of the analysis leads to the third algorithm which allows the complete adaptivity in space, homotopy stepsize as well as the iterative algebraic eigenvalue solver. All three algorithms are compared in numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M., Oden J.T.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, Inc., New Jersey (2000)

    Book  MATH  Google Scholar 

  2. Aitken A.C.: On Bernoulli’s numerical solution of algebraic equations. Proc. Royal Soc. Edinb. 46, 289–305 (1926)

    MATH  Google Scholar 

  3. Alonso A., Dello Russo A., Padra C., Rodríguez R.: A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems. Adv. Comput. Math. 15(1–4), 25– (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Argentati M.E., Knyazev A.V., Paige C.C., Panayotov I.: Bounds on changes in Ritz values for a perturbed invariant subspace of a Hermitian matrix. SIAM J. Matrix Anal. Appl. 30(2), 548–559 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška I., Osborn J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp. 52(186), 275–297 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Osborn J.E.: Eigenvalue Problems. Handbook of Numerical Analysis, vol. 2 (1991)

  7. Bai Z., Demmel J., Dongarra J., Ruhe A., van der Vorst H.: Templates for the Solution of Algebraic Eigenvalue Problem. A Practical Guide. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  8. Bangerth W., Rannacher R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  9. Boffi D., Fernandes P., Gastaldi L., Perugia I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36(4), 1264–1290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braack M., Ern A.: A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1(2), 221–238 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods Texts in Applied Mathematics. 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  12. Cartensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Preprint 489, DFG Research Center Matheon, Straße des 17. Juni 136, D-10623 Berlin (2008)

  13. Chatelin F.: Spectral Approximation of Linear Operators. Academic Press, New York (1983)

    MATH  Google Scholar 

  14. Dörfler W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Durán R.G., Padra C., Rodriguez R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13, 1219–1229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans L.C.: Partial differential equations. American Mathematical Society, Providence (2000)

    Google Scholar 

  17. Garau E.M., Morin P., Zuppa C.: Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19(5), 721–747 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gedicke J., Carstensen C.: A posteriori error estimators for non-symmetric eigenvalue problems. Preprint 659, DFG Research Center Matheon, Str. des 17. Juni 136, D-10623 Berlin, (2009)

  19. Giani S., Graham I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  21. Grubišić L., Ovall J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comp. 78(266), 739–770 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Hairer E., Nørsett S.P., Wanner G.: Solving Ordinary Differential Equations I: Nonstiff Problems. 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  23. Heiserer, D., Zimmer, H., Schäfer, M., Holzheuer C., Kondziella R.: Formoptimierung in der frühen Phase der Karosserieentwicklung. Vdi-Berichte 1846, Würzburg (2004)

  24. Hetmaniuk U.L., Lehoucq R.B.: Uniform accuracy of eigenpairs from a shift-invert lanczos method. SIAM J. Matrix Anal. Appl. 28, 927–948 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heuveline V., Rannacher R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comp. Math. 15, 107–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kato T.: Pertubation Theory for linear Operators. Springer, Berlin (1980)

    Google Scholar 

  27. Knyazev A.V.: New estimates for Ritz vectors. Math. Comp. 66(219), 985–995 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Knyazev A.V., Argentati M.E.: Rayleigh-Ritz majorization error bounds with applications to fem. SIAM. J. Matrix Anal. Appl. 31(3), 1521–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Knyazev A.V., Osborn J.E.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43(6), 2647–2667 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Larson M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608–625 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Larsson S., Thomée V.: Partial Differential Equations with Numerical Methods. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Lehoucq R.B., Sorensen D.C., Yang C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

    Google Scholar 

  33. Li T.Y., Zeng Z.: Homotopy-determinant algorithm for solving non-symmetric eigenvalue problems. Math. Comp. 59, 483–502 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li T.Y., Zeng Z.: The homotopy continuation algorithm for the real nonsymmetric eigenproblem: Further development and implementation. SIAM J. Sci. Comp. 20, 1627–1651 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li T.Y., Zeng Z., Cong L.: Solving eigenvalue problems of real nonsymmetrric matrices with real homotopies. SIAM J. Numer. Anal. 29, 229–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lui S.H., Golub G.H.: Homotopy method for the numerical solution of the eigenvalue problem of slef-adjoint partial differential operators. Numer. Algorithms 10, 363–378 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lui S.H., Keller H.B., Kwok T.W.C.: Homotopy method for the large sparse real nonsymmetric eigenvalue problem. SIAM J. Matrix Anal. Appl. 18, 312–333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mao D., Shen L., Zhou A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comp. Math. 25, 135–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. MATLAB, Version 7.10.0.499 (R2010a). The MathWorks, inc., 24 Prime Park Way, Natick, MA 01760-1500, USA (2010)

  40. Mehrmann V., Miedlar A.: Adaptive computation of smallest eigenvalues of elliptic partial differential equations. Numer. Linear Algebra Appl. 18, 387–409 (2011)

    Article  MathSciNet  Google Scholar 

  41. Neymeyr K.: A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl. 9(4), 263–279 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Parlett B.N.: The symmetric eigenvalue problem. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  43. Raviart P.A., Thomas J.M.: Introduction á l’Analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983)

    MATH  Google Scholar 

  44. Saad Y.: Numerical methods for large eigenvalue problems. Manchester University Press, Manchester (1992)

    MATH  Google Scholar 

  45. Sauter S.: hp-finite elements for elliptic eigenvalue problems: error estimates which are explicit with respect to λ, h, and p. SIAM J. Numer. Anal. 48(1), 95–108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Stewart G.W., Sun J.G.: Matrix perturbation theory. Academic Press Inc., Boston (1990)

    MATH  Google Scholar 

  47. Strang G., Fix G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  48. Trefethen L.N., Betcke T.: Computed eigenmodes of planar regions. Contemp. Math. 412, 297–314 (2006)

    MathSciNet  Google Scholar 

  49. Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, San Francisco (1996)

    MATH  Google Scholar 

  50. Xu J., Zhou A.: A two-grid discretization scheme for eigenvalue problems. Math. Comp. 70(233), 17–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mehrmann.

Additional information

V. Mehrmann: Supported by the DFG Research Center Matheon “Mathematics for Key Technologies” in Berlin. J. Gedicke and A. Miedlar: Supported by the DFG graduate school BMS “Berlin Mathematical School” in Berlin. C. Carstensen: World Class University (WCU) program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology R31-2008-000-10049-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carstensen, C., Gedicke, J., Mehrmann, V. et al. An adaptive homotopy approach for non-selfadjoint eigenvalue problems. Numer. Math. 119, 557–583 (2011). https://doi.org/10.1007/s00211-011-0388-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0388-x

Mathematics Subject Classification (2010)

Navigation