Skip to main content
Log in

Maximum-norm stability and maximal \(L^{p}\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the semi-discrete Galerkin finite element method for parabolic equations with Lipschitz continuous coefficients. We prove the maximum-norm stability of the semigroup generated by the corresponding elliptic finite element operator, and prove the space-time stability of the parabolic projection onto the finite element space in \(L^\infty ( Q_T)\) and \(L^p((0,T);L^q(\Omega ))\), \(1<p,q<\infty \). The maximal \(L^p\) regularity of the parabolic finite element equation is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bakaev, N.: Maximum norm resolvent estimates for elliptic finite element operators. BIT Numer. Math. 41, 215–239 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakaev, N., Thomée, V., Wahlbin, L.B.: Maximum-norm estimates for resolvents of elliptic finite element operators. Math. Comp 72, 1597–1610 (2002)

    Article  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation spaces: an introduction. Springer, Berlin Heidelberg (1976)

    Book  MATH  Google Scholar 

  5. Bramble, J.H., Schatz, A.H., Thomée, V., Wahlbin, L.B.: Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal. 14, 218–241 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, H.: An \(L^{2}\) and \(L^{\infty }\)-error analysis for parabolic finite element equations with applications by superconvergence and error expansions, Doctoral Dissertation, Heidelberg University (1993)

  7. Crouzeix, M.: Contractivity and analyticity in \(l^{p}\) of some approximation of the heat equation. Numer. Algorithms 33, 193–201 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crouzeix, M., Larsson, S., Thomée, V.: Resolvent estimates for elliptic finite element operators in one dimension. Math. Comp. 63, 121–140 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dobrowolski, M.: \(L^{\infty }\)-convergence of linear finite element approximation to nonlinear parabolic problems. SIAM J. Numer. Anal. 17, 663–674 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Douglas, J., Jr.: The numerical simulation of miscible displacement. In: Oden, J.T. (ed.) Computational methods in nonlinear mechanics. North Holland (1980)

  11. È\(\check{\rm {i}}\)del’man, S.D. Ivasi\(\check{\rm {s}}\)en, S.D.: Investigation of the Green matrix of a homogeneous parabolic boundary value problem. Tr. Mosk. Mat. Obs. 23, 179–234 (1970)

  12. Ewing, R.E., Lin, Y., Wang, J., Zhang, S.: \(L^{\infty }\)-error estimates and superconvergence in maximum norm of mixed finite element methods for nonfickian flows in porous media. Int. J. Numer. Anal. Modeling 2, 301–328 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Fabes, E.B., Stroock, D.W.: A new proof of Moser’s parabolic harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96, 327–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geissert, M.: Discrete maximal \(L^{p}\) regularity for finite element operators. SIAM J. Numer. Anal. 44, 677–698 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Geissert, M.: Applications of discrete maximal \(L^{p}\) regularity for finite element operators. Numer. Math. 108, 121–149 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grafakos, L.: Modern Fourier analysis. Graduate Texts in Mathematics, vol. 250. Springer, Berlin (2009)

  17. Hansbo, A.: Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT Numer. Math. 42, 351–379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Krantz, S.G.: A Panorama of harmonic analysis. The Carus Mathematical Monographs 27. The Mathematical Association of America, USA (1999)

    Google Scholar 

  19. Kunstmann, P.C., Weis, L.: Maximal \(L^{p}\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^{\infty }\)-functional calculus. Functional analytic methods for evolution equations. Lecture Notes in Mathematics 2004, 65–311 (1855)

    Google Scholar 

  20. Leykekhman, D.: Pointwise localized error estimates for parabolic finite element equations. Numer. Math. 96, 583–600 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1949–1977 (2013)

    Google Scholar 

  22. Li, B., Sun, w.: Regularity of the diffusion-dispersion tensor and error analysis of Galerkin FEMs for a porous media flow (preprint). http://arxiv.org/abs/1406.3515

  23. Lieberman, G.M.: Second-order parabolic differential equations. World Scientific Publishing, Singapore (2005). (reprinted)

    Google Scholar 

  24. Lin, Y.: On maximum norm estimates for Ritz–Volterra projection with applications to some time dependent problems. J. Comput. Math. 15, 159–178 (1997)

    MATH  MathSciNet  Google Scholar 

  25. Lin, Y., Thomée, V., Wahlbin, L.B.: Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28, 1047–1070 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lubich, C., Nevanlinna, O.: On resolvent conditions and stability estimates. BIT Numer. Math. 31, 293–313 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nitsche, J.A.: \(L_{\infty }\)-convergence of the finite element Galerkin approximations for parabolic problems. R.A.I.R.O. Analyse Numerique 13, 31–54 (1979)

    MATH  MathSciNet  Google Scholar 

  28. Nitsche, J.A., Wheeler, M.F.: \(L_{\infty }\)-boundedness of the finite element Galerkin operator for parabolic problems. Numer. Funct. Anal. Optim. 4:325–353 (1981/82)

  29. Palencia, C.: Maximum norm analysis of completely discrete finite element methods for parabolic problems. SIAM J. Numer. Anal. 33, 1654–1668 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rannacher, R.: \({L}^{\infty }\)-stability estimates and asymptotic error expansion for parabolic finite element equations, extrapolation and defect correction (1990). Bonner Math. Schriften 228, University of Bonn, pp. 74–94 (1991)

  31. Schatz, A.H., Thomée, V., Wahlbin, L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33, 265–304 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schatz, A.H., Thomée, V., Wahlbin, L.B.: Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations. Comm. Pure Appl. Math. 51, 1349–1385 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods II. Math. Comp. 64, 907–928 (1995)

    MATH  MathSciNet  Google Scholar 

  34. Solo, A.: Sharp estimates for finite element approximations to parabolic problems with Neumann boundary data of low regularity. BIT Numer. Math. 48, 117–137 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn. Springer, New York (1998)

    Google Scholar 

  36. Thomée, V., Wahlbin, L.B.: Maximum norm stability and error estimates in Galerkin methods for parabolic equations in one space variable. Numer. Math. 41, 345–371 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  37. Thomée, V., Wahlbin, L.B.: Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions. Numer. Math. 87, 373–389 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wahlbin, L.B.: A quasioptimal estimate in piecewise polynomial Galerkin approximation of parabolic problems. Numer. Anal. (Dundee, 1981), pp. 230–245

  39. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_{p}\) -regularity. Math. Ann. 319, 735–758 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Weis, L.: A new approach to maximal \({L}_{p}\)-regularity. Lecture Notes in Pure and Applied Mathematics, vol. 215. Evolution Equations and Their Applications in Physical and Life Sciences, Marcel Dekker, New York (2001)

  41. Wheeler, M.F.: \({L}^{\infty }\) estimates of optimal orders for Galerkin methods for one-dimensional second order parabolic and hyperbolic equations. SIAM J. Numer. Anal. 10, 908–913 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yosida, K.: Functional analysis. Springer, New York (1980)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Weiwei Sun for the helpful discussions and the anonymous referees for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buyang Li.

Additional information

The author was supported in part by NSFC (Grant No. 11301262).

Appendix: Interior estimates of parabolic equations on \(\widetilde{Q}_j'\)

Appendix: Interior estimates of parabolic equations on \(\widetilde{Q}_j'\)

Lemma 4.1

Suppose that \(\widetilde{\phi }\) is the solution of

$$\begin{aligned} \partial _t\widetilde{\phi }-\nabla _{\widetilde{x}}\cdot ( \widetilde{a}\nabla _{\widetilde{x}}\widetilde{\phi }) +\widetilde{c}\widetilde{\phi }=0\quad \text{ in }~~\widetilde{Q}_j', \end{aligned}$$
(4.14)

with the Neumann boundary condition \(\widetilde{a}\nabla _{\widetilde{x}}\widetilde{\phi }\cdot \mathbf{n}=0\) on \(\widetilde{\Omega }_j'\cap \partial \widetilde{\Omega }\) and the initial condition \(\widetilde{\phi }(\widetilde{x},0)=0\) in \(\widetilde{Q}_j'\), then we have

$$\begin{aligned}&{|\;\!\!|\;\!\!|}\partial _{\widetilde{t}}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j}+{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{2,\widetilde{Q}_j} +{|\;\!\!|\;\!\!|}\partial _{\widetilde{t}}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{2,\widetilde{Q}_j} +{|\;\!\!|\;\!\!|}\partial _{\widetilde{t}\widetilde{t}}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{2,\widetilde{Q}_j} \le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'} ,\\&\Vert \partial _{\widetilde{x}_i}\widetilde{\phi }\Vert _{L^\infty (\widetilde{Q}_j)} +\Vert \partial _{\widetilde{x}_i}\widetilde{\phi }\Vert _{C^{\alpha ,\alpha /2}(\overline{\widetilde{Q}}_j)} + \Vert \partial _{\widetilde{x}_i}\partial _{\widetilde{x}_l}\widetilde{\phi }\Vert _{L^{\infty ,p_1}(\widetilde{Q}_j)} \le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'} . \end{aligned}$$

Proof

Without loss of generality, we can assume that the Eq. (4.14) holds in \(\widetilde{Q}_j'''\) with the boundary condition on \(\widetilde{\Omega }_j'''\cap \partial \widetilde{\Omega }\).

Let \(\widetilde{\omega }(x,t)\) be a smooth function which equals \(1\) in \(\widetilde{Q}_{j}\) and equals zero outside \(\widetilde{Q}_j'\), with \(|\nabla \widetilde{\omega }|\le C\) and \(|\partial _t\widetilde{\omega }|\le C\), and let \(\widetilde{\chi }(x,t)\) be a smooth function which equals \(1\) in \(\widetilde{Q}_{j}'\) and equals \(0\) outside \(\widetilde{Q}_{j}''\), with \(|\nabla \widetilde{\chi }|\le C\) and \(|\partial _t\widetilde{\chi }|\le C\) (thus \(\widetilde{\chi }=1\) on the support of \(\widetilde{\omega }\)). Since \( \cup _{k\le j}\widetilde{\Omega }_k'' \cup \widetilde{\Omega }_*\) is of unit size, there exists a smooth subdomain \(\widetilde{D}\subset \widetilde{\Omega }\) such that \(\widetilde{D}\) has unit size and contains \( \cup _{k\le j}\widetilde{\Omega }_k'' \cup \widetilde{\Omega }_*\) (\(\partial \widetilde{D}\) may contain a part of the boundary of \(\partial \widetilde{\Omega }\)). Then \(\widetilde{D}\times (0,16)\) contains \(\widetilde{Q}_j''\) and \(\widetilde{\omega }\widetilde{\phi }\) vanishes outside \(\widetilde{D}\).

Integrating the Eq. (4.14) against \(\widetilde{\omega }^2\widetilde{\phi }\), we derive the basic local energy estimate

$$\begin{aligned} \Vert \widetilde{\omega }\widetilde{\phi }\Vert _{L^{2}((0,16);H^1(\widetilde{D}))} \le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'} . \end{aligned}$$
(4.15)

To present further estimates for \(\widetilde{\phi }\), we consider \(\widetilde{\omega }\widetilde{\phi }\), which is the solution of

$$\begin{aligned}&\left\{ \begin{array}{l@{\quad }l} \partial _{\widetilde{t}}(\widetilde{\omega }\widetilde{\phi }) -\nabla _{\widetilde{x}} \cdot (\widetilde{a} \nabla _{\widetilde{x}} (\widetilde{\omega }\widetilde{\phi })) =\widetilde{\chi }\widetilde{\phi }\partial _{\widetilde{t}}\widetilde{\omega }-\widetilde{a}\nabla _{\widetilde{x}} \widetilde{\omega }\cdot \nabla _{\widetilde{x}} (\widetilde{\chi }\widetilde{\phi })&{}\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad -\nabla _{\widetilde{x}} \cdot (\widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \widetilde{\omega }) \quad &{} \text{ in }~ \widetilde{D}\times (0,16) ,\\ \widetilde{a} \nabla _{\widetilde{x}} (\widetilde{\omega }\widetilde{\phi })\cdot \widetilde{\mathbf{n}}= \widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \widetilde{\omega }\cdot \widetilde{\mathbf{n}} \quad &{}\text{ on }~ \partial \widetilde{D}\times (0,16) ,\\ \widetilde{\omega }\widetilde{\phi }=0 \quad &{}\text{ on }~ \widetilde{D}\times \{0\} . \end{array}\right. \end{aligned}$$

Let \(\widetilde{W}\) be the solution of

$$\begin{aligned}&\left\{ \begin{array}{l@{\quad }l} \nabla _{\widetilde{x}} \cdot (\widetilde{a} \nabla _{\widetilde{x}} \widetilde{W}) =\nabla _{\widetilde{x}} \cdot (\widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \widetilde{\omega }) &{} \text{ in }~ \widetilde{D}\times (0,16) ,\\ \widetilde{a} \nabla _{\widetilde{x}} \widetilde{W}\cdot \widetilde{\mathbf{n}}= \widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \widetilde{\omega }\cdot \widetilde{\mathbf{n}} &{}\text{ on }~ \partial \widetilde{D}\times (0,16) , \end{array}\right. \end{aligned}$$

which satisfies the basic \(W^{2,p}\) estimate

$$\begin{aligned}&\Vert \widetilde{W}\Vert _{W^{2,p}(\widetilde{D})} \le C\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{W^{1,p}(\widetilde{D})} . \end{aligned}$$

Since \(\partial _{\widetilde{t}}\widetilde{W}\) is the solution of

$$\begin{aligned}&\left\{ \begin{array}{l@{\quad }l} \nabla _{\widetilde{x}} \cdot (\widetilde{a} \nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{W}) =\nabla _{\widetilde{x}} \cdot (\widetilde{a}\partial _{\widetilde{t}}(\widetilde{\chi }\widetilde{\phi })\nabla _{\widetilde{x}} \widetilde{\omega }+\widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{\omega }) \quad &{} \text{ in }~ \widetilde{D}\times (0,16) ,\\ \widetilde{a} \nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{W}\cdot \widetilde{\mathbf{n}}= (\widetilde{a}\partial _{\widetilde{t}}(\widetilde{\chi }\widetilde{\phi })\nabla _{\widetilde{x}} \widetilde{\omega }+\widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{\omega }) \cdot \widetilde{\mathbf{n}} \quad &{}\text{ on }~ \partial \widetilde{D}\times (0,16) , \end{array}\right. \end{aligned}$$

we can estimate \(\Vert \partial _{\widetilde{t}}\widetilde{W} \Vert _{L^{p}(\widetilde{D})} \) via a duality argument, by defining \(\phi \) as the solution of

$$\begin{aligned}&\left\{ \begin{array}{l@{\quad }l} -\nabla _{\widetilde{x}} \cdot (\widetilde{a} \nabla _{\widetilde{x}} \psi ) =\varphi \quad &{} \text{ in }~ \widetilde{D} ,\\ \widetilde{a} \nabla _{\widetilde{x}} \psi \cdot \widetilde{\mathbf{n}}=0 \quad &{}\text{ on }~ \partial \widetilde{D} , \end{array}\right. \end{aligned}$$

and considering

$$\begin{aligned} \big |\big ( \partial _{\widetilde{t}}\widetilde{W}, \varphi \big )\big |&= \big |\big (\widetilde{a} \nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{W}, \nabla _{\widetilde{x}} \psi \big )\big |\\&=\big |\big (\widetilde{a}\partial _{\widetilde{t}}\widetilde{\phi }\nabla _{\widetilde{x}} \widetilde{\omega }+\widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{\omega }, \nabla _{\widetilde{x}}\psi )\big |\\&= \big |\big (\nabla _{\widetilde{x}}\cdot (\widetilde{a}\nabla _{\widetilde{x}} \widetilde{\phi })-\widetilde{c}\widetilde{\phi }, \widetilde{a}\nabla _{\widetilde{x}}\widetilde{w} \cdot \nabla _{\widetilde{x}}\psi \big ) + \big (\widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{\omega }, \nabla _{\widetilde{x}}\psi )\big | \\&= \big |-\big (\widetilde{a}\nabla _{\widetilde{x}} \widetilde{\phi },\nabla _{\widetilde{x}}( \widetilde{a}\nabla _{\widetilde{x}}\widetilde{w} \cdot \nabla _{\widetilde{x}}\psi )\big ) -\big (\widetilde{c}\widetilde{\phi }, \widetilde{a}\nabla _{\widetilde{x}}\widetilde{w} \cdot \nabla _{\widetilde{x}}\psi \big )\\&\quad + \big (\widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{\omega }, \nabla _{\widetilde{x}}\psi )\big | \\&= \big |-\big (\widetilde{a}\nabla _{\widetilde{x}} (\widetilde{\chi }\widetilde{\phi }) ,\nabla _{\widetilde{x}}( \widetilde{a}\nabla _{\widetilde{x}}\widetilde{w} \cdot \nabla _{\widetilde{x}}\psi )\big ) -\big (\widetilde{c}\widetilde{\chi }\widetilde{\phi }, \widetilde{a}\nabla _{\widetilde{x}}\widetilde{w} \cdot \nabla _{\widetilde{x}}\psi \big )\\&\quad + \big (\widetilde{a}\widetilde{\chi }\widetilde{\phi }\nabla _{\widetilde{x}} \partial _{\widetilde{t}}\widetilde{\omega }, \nabla _{\widetilde{x}}\psi )\big | \\&\le C\Vert \widetilde{\phi }\widetilde{\chi }\Vert _{W^{1,p}(\widetilde{D})} \Vert \psi \Vert _{W^{2,p'}(\widetilde{D})}\\&\le C\Vert \widetilde{\phi }\widetilde{\chi }\Vert _{W^{1,p}(\widetilde{D})} \Vert \varphi \Vert _{L^{p'}(\widetilde{D})}, \end{aligned}$$

which implies

$$\begin{aligned} \Vert \partial _{\widetilde{t}}\widetilde{W} \Vert _{L^{p}(\widetilde{D})} \le C\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{W^{1,p}(\widetilde{D})} . \end{aligned}$$

Therefore, we have

$$\begin{aligned} \Vert \widetilde{W}\Vert _{L^p((0,16);W^{2,p}(\widetilde{D}))} +\Vert \partial _{\widetilde{t}}\widetilde{W}\Vert _{L^p((0,16);L^p(\widetilde{D}))} \le C\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{L^p((0,16);W^{1,p}(\widetilde{D}))} . \end{aligned}$$
(4.16)

Then we consider \(\widetilde{Z}=\widetilde{\omega }\widetilde{\phi }-\widetilde{W}\), which is the solution of

$$\begin{aligned}&\left\{ \begin{array}{l@{\quad }l} \partial _{\widetilde{t}}\widetilde{Z} -\nabla _{\widetilde{x}} \cdot (\widetilde{a} \nabla _{\widetilde{x}} \widetilde{Z}) =-\partial _{\widetilde{t}}\widetilde{W} +\widetilde{\chi }\widetilde{\phi }\partial _{\widetilde{t}}\widetilde{\omega }-\widetilde{a}\nabla _{\widetilde{x}} \widetilde{\omega }\cdot \nabla _{\widetilde{x}} (\widetilde{\chi }\widetilde{\phi }) \quad &{} \text{ in }~ \widetilde{D}\times (0,16) ,\\ \widetilde{a} \nabla _{\widetilde{x}} \widetilde{Z}\cdot \widetilde{\mathbf{n}}= 0 \quad &{}\text{ on }~ \partial \widetilde{D}\times (0,16) ,\\ \widetilde{Z}=0 \quad &{}\text{ on }~ \widetilde{D}\times \{0\} , \end{array}\right. \end{aligned}$$

and obeys the \(L^p((0,16);W^{2,p}(\widetilde{D}))\) estimate (see Lemma 2.1)

$$\begin{aligned}&\Vert \partial _{\widetilde{t}}\widetilde{Z}\Vert _{L^p(\widetilde{D}\times (0,16))} +\Vert \widetilde{Z}\Vert _{L^p((0,16);W^{2,p}(\widetilde{D}))} \nonumber \\&\le C\Vert \partial _{\widetilde{t}}\widetilde{W}\Vert _{L^p((0,16);L^{p}(\widetilde{D}))} +C\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{L^p((0,16);W^{1,p}(\widetilde{D}))} \nonumber \\&\le C\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{L^p((0,16);W^{1,p}(\widetilde{D}))} . \end{aligned}$$
(4.17)

(4.16)–(4.17) imply

$$\begin{aligned}&\Vert \partial _{\widetilde{t}}(\widetilde{\omega }\widetilde{\phi }) \Vert _{L^p((0,16);L^p(\widetilde{D}))} +\Vert \widetilde{\omega }\widetilde{\phi }\Vert _{L^p((0,16);W^{2,p}(\widetilde{D}))} \le C\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{L^p((0,16);W^{1,p}(\widetilde{D}))} . \end{aligned}$$
(4.18)

In particular, by setting \(p=2\) in the last inequality and using (4.15), we obtain

$$\begin{aligned}&\Vert \partial _{\widetilde{t}}(\widetilde{\omega }\widetilde{\phi }) \Vert _{L^2((0,16);L^2(\widetilde{D}))} +\Vert \widetilde{\omega }\widetilde{\phi }\Vert _{L^2((0,16);H^2(\widetilde{D}))} \le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j''} . \end{aligned}$$
(4.19)

Since

$$\begin{aligned} L^q((0,16);W^{2,q}(\widetilde{D}))\cap W^{1,q}((0,16);L^{q}(\widetilde{D}))\hookrightarrow L^p((0,16);W^{1,p}(\widetilde{D})) \end{aligned}$$

for \(p>2\) and \(q=3dp/(3d+p)<p\), (4.18) also implies

$$\begin{aligned}&\Vert \partial _{\widetilde{t}}(\widetilde{\omega }\widetilde{\phi }) \Vert _{L^p((0,16);L^p(\widetilde{D}))} +\Vert \widetilde{\omega }\widetilde{\phi }\Vert _{L^p((0,16);W^{2,p}(\widetilde{D}))} \\&\le C(\Vert \partial _{\widetilde{t}}(\widetilde{\chi }\widetilde{\phi }) \Vert _{L^q((0,16);L^q(\widetilde{D}))} +\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{L^q((0,16);W^{2,q}(\widetilde{D}))} ) , \end{aligned}$$

and an iteration of this inequality gives (with a change of indices)

$$\begin{aligned}&\Vert \partial _{\widetilde{t}}(\widetilde{\omega }\widetilde{\phi }) \Vert _{L^p((0,16);L^p(\widetilde{D}))} +\Vert \widetilde{\omega }\widetilde{\phi }\Vert _{L^p((0,16);W^{2,p}(\widetilde{D}))} \nonumber \\&\le C(\Vert \partial _{\widetilde{t}}(\widetilde{\chi }\widetilde{\phi }) \Vert _{L^2((0,16);L^2(\widetilde{D}))} +\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{L^2((0,16);H^2(\widetilde{D}))} ) \nonumber \\&\le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'''} , \end{aligned}$$
(4.20)

where we have used (4.19) in the last step. Since \(\partial _{\widetilde{t}}\widetilde{\phi }\) and \(\partial _{\widetilde{t}\widetilde{t}}\widetilde{\phi }\) satisfies the same equation as \(\widetilde{\phi }\) in \(Q_j'''\), the last inequality still holds if \(\widetilde{\phi }\) is replaced by \(\partial _{\widetilde{t}}\widetilde{\phi }\) or \(\partial _{\widetilde{t}\widetilde{t}}\widetilde{\phi }\) (with a change of indices, replacing \(\widetilde{Q}_j'''\) by \(\widetilde{Q}_j'\)), i.e.

$$\begin{aligned}&\Vert \partial _{\widetilde{t}}(\widetilde{\omega }\partial _{\widetilde{t}}\widetilde{\phi })\Vert _{L^{p}(\widetilde{D}\times (0,16))} +\Vert \widetilde{\omega }\partial _{\widetilde{t}}\widetilde{\phi }\Vert _{L^{p}((0,16);W^{2,p}(\widetilde{D}))} \le C{|\;\!\!|\;\!\!|}\partial _{\widetilde{t}}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'} , \end{aligned}$$
(4.21)
$$\begin{aligned}&\Vert \partial _{\widetilde{t}}(\widetilde{\omega }\partial _{\widetilde{t}\widetilde{t}}\widetilde{\phi })\Vert _{L^{p}(\widetilde{D}\times (0,16))} +\Vert \widetilde{\omega }\partial _{\widetilde{t}\widetilde{t}}\widetilde{\phi }\Vert _{L^{p}((0,16);W^{2,p}(\widetilde{D}))} \le C{|\;\!\!|\;\!\!|}\partial _{\widetilde{t}\widetilde{t}}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'} . \end{aligned}$$
(4.22)

The last three inequalities imply that (with a change of indices)

$$\begin{aligned}&{|\;\!\!|\;\!\!|}\partial _{\widetilde{t}}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j}+{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{2,\widetilde{Q}_j} +{|\;\!\!|\;\!\!|}\partial _{\widetilde{t}}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{2,\widetilde{Q}_j} +{|\;\!\!|\;\!\!|}\partial _{\widetilde{t}\widetilde{t}}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{2,\widetilde{Q}_j} \le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'} , \nonumber \\&\Vert \partial _{\widetilde{x}_i}\partial _{\widetilde{x}_l}\widetilde{\phi }\Vert _{L^{p_1}(\widetilde{Q}_j)}+ \Vert \partial _{\widetilde{x}_i}\partial _{\widetilde{x}_l}\partial _{\widetilde{t}}\widetilde{\phi }\Vert _{L^{p_1}(\widetilde{Q}_j)} \le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'} , \end{aligned}$$
(4.23)

and so

$$\begin{aligned} \Vert \partial _{\widetilde{t}}(\widetilde{\omega }\widetilde{\phi }) \Vert _{L^{p}((0,16);W^{2,p}(\widetilde{D}))}&\le \Vert \widetilde{\phi }\partial _{\widetilde{t}}\widetilde{\omega }\Vert _{L^{p}((0,16);W^{2,p}(\widetilde{D}))} +\Vert \widetilde{\omega }\partial _{\widetilde{t}}\widetilde{\phi }\Vert _{L^{p}((0,16);W^{2,p}(\widetilde{D}))} \\&\le C(\Vert \widetilde{\chi }\widetilde{\phi }\Vert _{L^{p}((0,16);W^{2,p}(\widetilde{D}))} +\Vert \widetilde{\chi }\partial _{\widetilde{t}}\widetilde{\phi }\Vert _{L^{p}((0,16);W^{2,p}(\widetilde{D}))}) \\&\le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j''} , \end{aligned}$$

where we have used (4.20)–(4.21) (replacing \(\widetilde{\omega }\) by \(\widetilde{\chi }\) in these inequalities). This gives an estimate of \(\widetilde{\omega }\widetilde{\phi }\) in terms of the norm of \(W^{1,p}((0,16);W^{2,p}(\widetilde{D}))\). When \(p_1>d\), we have \(W^{1,p_1}((0,16);W^{2,p_1}(\widetilde{D}))\hookrightarrow C^{1+\alpha ,(1+\alpha )/2}(\overline{\widetilde{D}}\times [0,16])\) for some \(\alpha >0\), and so

$$\begin{aligned}&\Vert \widetilde{\omega }\widetilde{\phi }\Vert _{C^{1+\alpha ,(1+\alpha )/2}(\overline{\widetilde{D}}\times [0,16])} +\Vert \widetilde{\omega }\widetilde{\phi }\Vert _{L^{\infty }((0,16);W^{2,p_1}(\widetilde{D}))}\\&\le C(\Vert \partial _{\widetilde{t}}(\widetilde{\omega }\widetilde{\phi }) \Vert _{L^{p_1}((0,16);W^{2,p_1}(\widetilde{D}))} +\Vert \widetilde{\omega }\widetilde{\phi }\Vert _{L^{p_1}((0,16);W^{2,p_1}(\widetilde{D}))})\\&\le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j''} . \end{aligned}$$

With a change of indices, the last inequality implies

$$\begin{aligned}&\Vert \partial _{\widetilde{x}_i}\widetilde{\phi }\Vert _{L^\infty (\widetilde{Q}_j)} +\Vert \partial _{\widetilde{x}_i}\widetilde{\phi }\Vert _{C^{\alpha ,\alpha /2}(\overline{\widetilde{Q}}_j)} + \Vert \partial _{\widetilde{x}_i}\partial _{\widetilde{x}_l}\widetilde{\phi }\Vert _{L^{\infty ,p_1}(\widetilde{Q}_j)} \le C{|\;\!\!|\;\!\!|}\widetilde{\phi }{|\;\!\!|\;\!\!|}_{\widetilde{Q}_j'} . \end{aligned}$$
(4.24)

The proof of Lemma 4.1 is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B. Maximum-norm stability and maximal \(L^{p}\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math. 131, 489–516 (2015). https://doi.org/10.1007/s00211-015-0698-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0698-5

Mathematics Subject Classification

Navigation