Skip to main content
Log in

Representation of conformal maps by rational functions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The traditional view in numerical conformal mapping is that once the boundary correspondence function has been found, the map and its inverse can be evaluated by contour integrals. We propose that it is much simpler, and 10–1000 times faster, to represent the maps by rational functions computed by the AAA algorithm. To justify this claim, first we prove a theorem establishing root-exponential convergence of rational approximations near corners in a conformal map, generalizing a result of D. J. Newman in 1964. This leads to the new algorithm for approximating conformal maps of polygons. Then we turn to smooth domains and prove a sequence of four theorems establishing that in any conformal map of the unit circle onto a region with a long and slender part, there must be a singularity or loss of univalence exponentially close to the boundary, and polynomial approximations cannot be accurate unless of exponentially high degree. This motivates the application of the new algorithm to smooth domains, where it is again found to be highly effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The name comes from “adaptive Antoulas–Anderson” and is pronounced “triple-A”.

  2. We use the SC Toolbox commands w = [2+i 1+i 1+2i 2i 0 2];c = .7+.7i;p = polygon(w);opts = sctool.scmapopt(’Tolerance’,1e-12);f = diskmap(p,opts);f = center(f,c).

  3. Following Driscoll’s suggestion (private communication), we have also improved the accuracy of the inverse map by adding the line newton = false after the command [ode,newton,tol,maxiter] = sctool.scinvopt(options) in the Toolbox file @diskmap/private/dinvmap.m.

  4. One can prove that \(f^{-1}\) is analytic at a right-angle salient corner by analytically continuing the conformal map around the vertex with four applications of the Schwarz reflection principle. Such an argument shows that in general, a corner of a polygon is a nonsingular point of the inverse conformal map if and only if the interior angle is \(\pi \) divided by an integer. This is essentially the same as the observation about sharpness just after (1).

References

  1. Ahlfors, L.: Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Dr. der Finnischen Literaturges (1930)

  2. Ahlfors, L.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  3. Badreddine, M., DeLillo, T.K., Sahraei, S.: A comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discret. Contin. Dyn. Syst. Ser. B 24, 55–82 (2019)

    MATH  Google Scholar 

  4. Banjai, L.: Revisiting the crowding phenomenon in Schwarz–Christoffel mapping. SIAM J. Sci. Comput. 30, 618–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing. SIAM, University City (2004)

    Book  MATH  Google Scholar 

  6. Caldwell, T., Li, K., Greenbaum, A.: Numerical conformal mapping in Chebfun, poster. In: Householder XX Symposium on Numerical Linear Algebra, Blacksburg (2017)

  7. Computational Methods and Function Theory. Special Issue on Numerical Conformal Mapping, vol. 11, no. 2, pp. 375–787 (2012)

  8. DeLillo, T.K.: The accuracy of numerical conformal mapping methods: a survey of examples and results. SIAM J. Numer. Anal. 31, 788–812 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. DeLillo, T.K., Pfaltzgraff, J.A.: Extremal distance, harmonic measure and numerical conformal mapping. J. Comput. Appl. Math. 46, 103–113 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Driscoll, T.A.: Algorithm 756: A MATLAB toolbox for Schwarz–Christoffel mapping. ACM Trans. Math. Softw. 22, 168–186 (1996)

    Article  MATH  Google Scholar 

  11. Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun User’s Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  12. Driscoll, T.A., Trefethen, L.N.: Schwarz–Christoffel Mapping. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  13. Ellacott, S.W.: A technique for approximate conformal mapping. In: Handscomb, D.C. (ed.) Multivariable Approximation. Academic Press, London (1978)

    Google Scholar 

  14. Filip, S., Javeed, A., Trefethen, L.N.: Smooth random functions, random ODEs, and Gaussian pocesses. SIAM Rev. (to appear)

  15. Gaier, D.: Konstruktive Methoden der konformen Abbildung. Springer, Berlin (1964)

    Book  MATH  Google Scholar 

  16. Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  17. Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110, 1–22 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 5th edn. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  19. Hakula, H., Quach, T.A., Rasila, A.: Conjugate function method for numerical conformal mappings. J. Comput. Appl. Math. 237, 340–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henrici, P.: Applied and Computational Complex Analysis, 3rd edn. Wiley, Hoboken (1974)

    MATH  Google Scholar 

  21. Kerzman, N., Stein, E.M.: The Cauchy kernel, the Szegő kernel, and the Riemann mapping function. Math. Ann. 236, 85–93 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kerzman, N., Trummer, M.R.: Numerical conformal mapping via the Szegő kernel. J. Comput. Appl. Math. 14, 111–123 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lehman, R.S.: Development of the mapping function at an analytic corner. Pac. J. Math. 7, 1437–1449 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marden, M.: Geometry of Polynomials, 2nd edn. American Mathematical Society, Providence (1966)

    MATH  Google Scholar 

  25. Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  26. Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40, A1494–A1522 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Newman, D.J.: Rational approximation to \(|x|\). Mich. Math. J. 11, 11–14 (1964)

    Article  MATH  Google Scholar 

  28. Papamichael, N., Stylianopoulos, N.: Numerical Conformal Mapping: Domain Decomposition and the Mapping of Quadrilaterals. World Scientific Publishing, Singapore (2010)

    Book  MATH  Google Scholar 

  29. Papamichael, N., Warby, M.K., Hough, D.M.: The treatment of corner and pole-type singularities in numerical conformal mapping techniques. J. Comput. Appl. Math. 14, 163–191 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pfluger, A.: Extremallängen und Kapazität. Comment. Math. Helv. 29, 120–131 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pommerenke, Ch.: Boundary Behavior of Conformal Maps. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  32. Reichel, L.: On polynomial approximation in the complex plane with application to conformal mapping. Math. Comput. 44, 425–433 (1985). An earlier technical report version version with additional material appeared as Report TRITA-NA-8102. Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm (1981)

  33. Stahl, H.: The convergence of Padé approximants to functions with branch points. J. Approx. Theory 91, 139–204 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stahl, H.: Spurious poles in Padé approximation. J. Comput. Appl. Math. 99, 511–527 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stahl, H.R.: Best uniform rational approximation of \(x^\alpha \) on \([0,1]\). Acta Math. 190, 241–306 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Suetin, S.P.: Distribution of the zeros of Padé polynomials and analytic continuation. Russ. Math. Surv. 70, 901–951 (2015)

    Article  MATH  Google Scholar 

  37. Trefethen, L.N.: Numerical computation of the Schwarz–Christoffel transformation. SIAM J. Sci. Stat. Comput. 1, 82–102 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, University City (2013)

    MATH  Google Scholar 

  39. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wegmann, R.: Methods for numerical conformal mapping. In: Kühnau, R. (ed.) Handbook of Complex Analysis: Geometric Function Theory, 2nd edn, pp. 351–477. Elsevier, New York (2005)

    Chapter  Google Scholar 

Download references

Acknowledgements

This paper originated in stimulating discussions with Anne Greenbaum and Trevor Caldwell about their computations with the Kerzman–Stein integral equation, and Grady Wright gave key assistance in a Chebfun implementation. The heart of the paper is Schwarz–Christoffel mapping, which is made numerically possible by Toby Driscoll’s marvelous SC Toolbox. Driscoll, and Yuji Nakatsukasa offered helpful advice along the way, and the suggestions of Dmitry Belyaev, Chris Bishop, and Tom DeLillo were crucial for developing the theorems of Sect. 4. Among other things, Belyaev caught an error in an early version of Theorems 2 and 3 and Bishop pointed us to Theorem 6.1 of [16] and proposed the idea of Theorem 4. Much of this article was written during an extremely enjoyable 2017–2018 sabbatical visit by the second author to the Laboratoire de l’Informatique du Parallélisme at ENS Lyon hosted by Nicolas Brisebarre, Jean-Michel Muller, and Bruno Salvy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd N. Trefethen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, A., Trefethen, L.N. Representation of conformal maps by rational functions. Numer. Math. 142, 359–382 (2019). https://doi.org/10.1007/s00211-019-01023-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01023-z

Mathematics Subject Classification

Navigation