Skip to main content
Log in

Modulators of the glycine site on NMDA receptors, d-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Schizophrenia is characterized by disturbances in sensorimotor gating and attentional processes, which can be measured by prepulse inhibition (PPI) and latent inhibition (LI), respectively. Research has implicated dysfunction of neurotransmission at the NMDA-type glutamate receptor in this disorder.

Objectives

This study was conducted to examine whether compounds that enhance NMDA receptor (NMDAR) activity via glycine B site, d-serine and ALX 5407 (glycine transporter type 1 inhibitor), alter PPI and LI in the presence or absence of an NMDAR antagonist, MK-801.

Methods

C57BL/6J mice were tested in a standard PPI paradigm with three prepulse intensities. LI was measured in a conditioned emotional response procedure by comparing suppression of drinking in response to a noise in mice that previously received 0 (non-preexposed) or 40 noise exposures (preexposed) followed by two or four noise–foot shock pairings.

Results

Clozapine (3 mg/kg) and d-serine (600 mg/kg), but not ALX 5407, facilitated PPI. MK-801 dose dependently reduced PPI. The PPI disruptive effect of MK-801 (1 mg/kg) could be reversed by clozapine and ALX 5407, but not by d-serine. All the compounds were able to potentiate LI under conditions that disrupted LI in controls. MK-801 induced abnormal persistence of LI at a dose of 0.15 mg/kg. Clozapine, d-serine, and ALX 5407 were equally able to reverse persistent LI induced by MK-801.

Conclusions

d-Serine and ALX 5407 display similar effects to clozapine in PPI and LI mouse models, suggesting potential neuroleptic action. Moreover, the finding that agonists of NMDARs and clozapine can restore disrupted LI and disrupt persistent LI may point to a unique ability of the NMDA system to regulate negative and positive symptoms of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arvanov V, Liang X, Schwartz J, Grossman S, Wang R (1997) Clozapine and haloperidol modulate N-methyl-d-aspartate and non-N-methyl-d-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 283:226–234

    Google Scholar 

  • Atkinson BN, Bell SC, De Vivo M, Kowalski LR, Lechner SM, Ognyanov VI, Tham CS, Tsai C, Jia J, Ashton D, Klitenick MA (2001) ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol Pharmacol 60:1414–1420

    Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    CAS  PubMed  Google Scholar 

  • Bardgett ME, Boeckman R, Krochmal D, Fernando H, Ahrens R, Csernansky JG (2003) NMDA receptor blockade and hippocampal neuronal loss impair fear conditioning and position habit reversal in C57BL/6J mice. Brain Res Bull 60:131–142

    Google Scholar 

  • Berger AJ, Dieudonne S, Ascher P (1998) Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 80:3336–3340

    Google Scholar 

  • Bonhaus DW, Yeh GC, Skaryak L, McNamara JO (1989) Glycine regulation of the N-methyl-d-aspartate receptor-gated ion channel in hippocampal membranes. Mol Pharmacol 36:273–279

    Google Scholar 

  • Braff D, Geyer MA, Swerdlow NR (2001) Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry 47:181–188

    Google Scholar 

  • Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40(2):361–379

    Google Scholar 

  • Brody SA, Geyer MA, Large CH (2003) Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology (Berl) 169(3–4):240–246

    Google Scholar 

  • Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 99(21):13675–13680

    Google Scholar 

  • Cohen E, Sereni N, Kaplan O, Weizman A, Kikinzon L, Weiner I, Lubow RE (2004) The relation between latent inhibition and symptom-types in young schizophrenics. Behav Brain Res 149(2):113–122

    Google Scholar 

  • Coyle JT, Tsai G, Goff D (2003) Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann NY Acad Sci 1003:318–327

    Google Scholar 

  • Curzon P, Decker MW (1998) Effects of phencyclidine (PCP) and MK-801 on sensorimotor gating in CD-1 mice. Prog Neuro-Psychopharmacol Biol Psychiatry 22:129–146

    Google Scholar 

  • Danysz W, Parsons AC (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    CAS  PubMed  Google Scholar 

  • Dunn LA, Atwater GE, Kilts CD (1993) Effects of antipsychotic drugs on latent inhibition-sensitivity and specificity of an animal behavioral model of clinical drugs action. Psychopharmacology 112:315–323

    Google Scholar 

  • Gaisler-Salomon I, Weiner I (2003) Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology (Berl) 166:333–342

    Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158(9):1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA, Hayden DL, McCarley R, Coyle JT (1999) A placebo-controlled trial of d-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 56:21–27

    Article  CAS  PubMed  Google Scholar 

  • Gould J, Wehner JM (1999) Genetic influence on latent inhibition. Behav Neurosci 113(6):1291–1296

    Google Scholar 

  • Gray JA, Feldon J, Rawlins JNP, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14:1–20

    Google Scholar 

  • Gray NS, Hemsley DR, Gray JA (1992) Abolition of latent inhibition in acute, but not chronic, schizophrenics. Neurol Psychiatry Brain Res 1:83–89

    Google Scholar 

  • Harrison PJ, Law AJ, Eastwood SL (2003) Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 1003:94–101

    Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993) Endogenous d-serine in rat brain: N-methyl-d-aspartate receptor related distribution and aging. J Neurochem 60:783–786

    Google Scholar 

  • Heresco-Levy U (2003) Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuro-Psychopharmacol Biol Psychiatry 27:1113–1123

    Google Scholar 

  • Heresco-Levy U, Javitt DC (2004) Comparative effects of glycine and d-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66:89–96

    Article  PubMed  Google Scholar 

  • Higgins GA, Enderlin M, Haman M, Fletcher PJ (2003) The 5-HT2A receptor antagonist M100, 907 attenuates motor and ‘impulsive-type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl) 170(3):309–319

    Article  Google Scholar 

  • Javitt DC (2002) Glycine modulators in schizophrenia. Curr Opin Investig Drugs 3(7):1067–1072

    Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Javitt DC, Balla A, Sershen H, Lajtha A (1999) A.E. Bennett Research Award. Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 45:668–679

    Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48(7):627–640

    Google Scholar 

  • Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, Wittmann M, Lemaire W, Conn PJ (2003) The glycine transporter type 1 inhibitor N-[3-(4′-Fluorophenyl)-3-(4′-Phenylphenoxy)Propyl]Sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 23(20):7586–7591

    Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    CAS  PubMed  Google Scholar 

  • Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 169:215–233

    Article  Google Scholar 

  • Le Pen G, Kew J, Alberati D, Borroni E, Heitz MP, Moreau JL (2003) Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: reversal by glycine and a glycine transporter inhibitor. Biol Psychiatry 54(11):1162–1170

    Google Scholar 

  • Lewis DA, Glantz LA, Pierri JN, Sweet RA (2003) Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann NY Acad Sci 1003:102–112

    Google Scholar 

  • Malhotra AK, Adler CM, Kennison SD, Elman I, Pickar D, Breier A (1997) Clozapine blunts N-methyl-d-aspartate antagonist-induced psychosis: a study with ketamine. Biol Psychiatry 42:664–668

    Google Scholar 

  • Mansbach RS, Geyer M (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2:299–308

    CAS  PubMed  Google Scholar 

  • Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557(Pt 2):489–500

    Google Scholar 

  • Meltzer HY, Nash JF (1991) Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev 43:587–604

    Google Scholar 

  • Millan MJ (2002) N-Methyl-d-aspartate receptor-coupled glycineB receptors in the pathogenesis and treatment of schizophrenia: a critical review. Curr Drug Targets CNS Neurol Disord 1:191–213

    Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 33:275–307

    Google Scholar 

  • Nilsson M, Carlsson A, Carlsson ML (1997) Glycine and d-serine decrease MK-801-induced hyperactivity in mice. J Neural Transm 104:1195–1205

    Google Scholar 

  • Nilsson M, Waters S, Waters N, Carlsson A, Carlsson ML (2001) A behavioural pattern analysis of hypoglutamatergic mice—effects of four different antipsychotic agents. J Neural Transm 108:1181–1196

    CAS  PubMed  Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology (Berl) 156:284–290

    Google Scholar 

  • Ouagazzal A-M, Jenck F, Moreau J-L (2001) Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model for detecting antipsychotic activity? Psychopharmacology 156:273–283

    Google Scholar 

  • Rascle C, Mazas O, Vaiva G, Tournant M, Raybois O, Goudemand M et al (2001) Clinical features of latent inhibition in schizophrenia. Schizophr Res 51:149–161

    Google Scholar 

  • Robinson GB, Port RL, Stillwell EJ (1993) Latent inhibition of the classically conditioned rabbit nictitating membrane response is unaffected by the NMDA antagonist MK 801. Psychobiology 21:120–124

    Google Scholar 

  • Scheffer HH (2002) Glutamate receptor genes: susceptibility factors in schizophrenia and depressive disorders? Mol Neurobiol 25(2):191–212

    Google Scholar 

  • Schwieler L, Engberg G, Erhardt S (2004) Clozapine modulates midbrain dopamine neurons firing via interaction with the NMDA receptor complex. Synapse 52:114–122

    Google Scholar 

  • Shadach E, Gaisler I, Schiller D, Weiner I (2000) The latent inhibition model dissociates between clozapine, haloperidol, and ritanserin. Neuropsychopharmacology 23(2):151–161

    Google Scholar 

  • Sheinin A, Shavit S, Benveniste M (2001) Subunit specificity and mechanism of action of NMDA partial agonist d-cycloserine. Neuropharmacology 41:151–158

    Google Scholar 

  • Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 8:927–935

    Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenia patients. Arch Gen Psychiatry 51:139–154

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Bakshi V, Waikar M, Taaid N, Geyer MA (1998) Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology (Berl) 140(1):75–80

    Google Scholar 

  • Tanii Y, Nishikawa T, Hashimoto A, Takahashi K (1994) Stereoselective antagonism by enantiomers of alanine and serine of phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat. J Pharmacol Exp Ther 269:1040–1048

    Google Scholar 

  • Tedford CE, Babu JS, Dority MD, Angle JM, Yates SL (2002) The characterization of two novel series of glycine transporter inhibitors and potential utility as atypical anti-psychotic agents. Society for Neuroscience Abstract Program No. 144.9

  • Thornton JC, Dawe S, Lee C, Capstick C, Corr PJ, Cotter P, Frangou S, Gray NS, Russell MA, Gray JA (1996) Effects of nicotine and amphetamine on latent inhibition in human subjects. Psychopharmacology (Berl) 127:164–173

    Google Scholar 

  • Toth E, Lajtha A (1986) Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res 11:393–400

    Google Scholar 

  • Tsai G, Lane HY, Yang P, Chong MY, Lange N (2004) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for treatment of schizophrenia. Biol Psychiatry 55(5):452–456

    Google Scholar 

  • Turgeon SM, Auerbach EA, Duncan-Smith MK, George JR, Graves WW (2000) The delayed effects of DTG and MK-801 on latent inhibition in a conditioned taste-aversion paradigm. Pharmacol Biochem Behav 66:533–539

    Google Scholar 

  • van der Meulen JA, Bilbija L, Joosten RN, de Bruin JP, Feenstra MG (2003) The NMDA-receptor antagonist MK-801 selectively disrupts reversal learning in rats. NeuroReport 14(17):2225–2228

    Google Scholar 

  • Varty GB, Higgins GA (1995) Reversal of a dizoclipine-induced disruption of prepulse inhibition of an acoustic startle response by the 5-HT2 receptor antagonist ketanserin. Eur J Pharmacol 287:201–205

    Google Scholar 

  • von Euler G, Liu Y (1993) Glutamate and glycine decrease the affinity of [3H]MK-801 binding in the presence of Mg2+. Eur J Pharmacol 245:233–239

    Google Scholar 

  • Waterhouse RN (2003) Imaging the PCP site of the NMDA ion channel. Nucl Med Biol 30(8):869–878

    Google Scholar 

  • Waziri R (1988) Glycine therapy of schizophrenia. Biol Psychiatry 23:210–211

    Google Scholar 

  • Weiner I (1990) Neural substrates of latent inhibition: the switching model. Psychol Bull 108:442–461

    Article  CAS  PubMed  Google Scholar 

  • Weiner I (2001) Latent inhibition. In: Crawley JN, Gerfen CR, Rogawski MA, Sibley DR, Skolnick P (eds) Current protocols in neuroscience. Wiley, New York

    Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 169(3–4):257–297

    Google Scholar 

  • Weiner I, Feldon J (1992) Phencyclidine does not disrupt latent inhibition in rats: implications for animal models of schizophrenia. Pharmacol Biochem Behav 42:625–631

    Google Scholar 

  • Weiner I, Feldon J (1997) The switching model of latent inhibition: an update of neural substrates. Behav Brain Res 88:11–25

    Google Scholar 

  • Weiner I, Lubow RE, Feldon J (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology (Berl) 83:194–199

    Google Scholar 

  • Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behav 30:871–878

    Google Scholar 

  • Weiner I, Shadach E, Tarrasch R, Kidron R, Feldon J (1996) The latent inhibition model of schizophrenia: further validation using the atypical neuroleptic, clozapine. Biol Psychiatry 40:834–843

    Google Scholar 

  • Weiner I, Shadach E, Barkai R, Feldon J (1997) Haloperidol- and clozapine-induced enhancement of latent inhibition with extended conditioning: implications for the mechanism of action of neuroleptic drugs. Neuropsychopharmacology 16:42–50

    Google Scholar 

  • Weiner I, Schiller D, Gaisler-Salomon I (2003) Disruption and potentiation of latent inhibition by risperidone: the latent inhibition model of atypical antipsychotic action. Neuropsychopharmacology 28:499–509

    Google Scholar 

  • Yamada S, Harano M, Annoh N, Nakamura K, Tanaka M (1999) Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 46:832–838

    Article  CAS  PubMed  Google Scholar 

  • Yee BK, Chang DT, Feldon J (2004) The effects of dizocilpine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 29(10):1865–1877

    Google Scholar 

Download references

Acknowledgements

Funding was provided by the Ontario Mental Health Foundation (OMHF) and the Canadian Institutes of Health Research (CIHR). Viviane Labrie was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Lipina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipina, T., Labrie, V., Weiner, I. et al. Modulators of the glycine site on NMDA receptors, d-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology 179, 54–67 (2005). https://doi.org/10.1007/s00213-005-2210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2210-x

Keywords

Navigation