Skip to main content

Advertisement

Log in

Cognitive evaluation of disease-modifying efficacy of donepezil in the APP23 mouse model for Alzheimer’s disease

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The interest for acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease has been greatly renewed owing to the discovery of a broad range of additional cholinergic and non-cholinergic effects, exploitable to maximize the efficacy of these drugs beyond merely improving intellectual functions at the symptomatic level.

Objectives

The age-dependent cognitive decline in the valid APP23 transgenic mouse model for Alzheimer’s disease was employed to evaluate disease-modifying efficacy of chronic treatment with donepezil.

Materials and methods

At age 6 weeks, heterozygous APP23 mice and control littermates were subcutaneously implanted with osmotic pumps delivering saline or donepezil (0.27 or 0.58 mg/kg per day). After 2 months of treatment, a 3-week wash-out period was allowed to prevent bias from sustained symptomatic effects before cognitive evaluation in the Morris water maze commenced.

Results

Donepezil (0.27 mg/kg per day)-treated APP23 mice performed significantly better than their sham-treated counterparts during the Morris water maze acquisition phase and the subsequent probe or retention trial. Chronic donepezil (0.27 mg/kg per day) treatment improved spatial accuracy in APP23 mice as to reach the same level of performance as wild-type control animals on this complex visual–spatial learning task.

Conclusion

This is the first study reporting disease-modifying efficacy of donepezil at the level of cognitive performance in transgenic mice modeling Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arias E, Gallego-Sandín S, Villarroya M, García AG, López MG (2005) Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors. J Pharmacol Exp Ther 315:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Bartolini M, Bertucci C, Cavrini V, Andrisano V (2003) Beta-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 65:407–416

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    Article  PubMed  CAS  Google Scholar 

  • Bejar C, Wang RH, Weinstock M (1999) Effect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol 383:231–240

    Article  PubMed  CAS  Google Scholar 

  • Birks J, Harvey RJ (2006) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev (1):CD001190

  • Bodick N, Forette F, Hadler D, Harvey RJ, Leber P, McKeith IG, Riekkinen PJ, Rossor MN, Scheltens P, Shimohama S, Spiegel R, Tanaka S, Thal LJ, Urata Y, Whitehouse P, Wilcock G (1997) Protocols to demonstrate slowing of Alzheimer disease progression. Position paper from the International Working Group on Harmonization of Dementia Drug Guidelines. The Disease Progression Sub-Group. Alzheimer Dis Assoc Disord 11:50–53

    PubMed  Google Scholar 

  • Braida D, Sala M (2001) Eptastigmine: ten years of pharmacology, toxicology, pharmacokinetic, and clinical studies. CNS Drug Rev 7:369–386

    Article  PubMed  CAS  Google Scholar 

  • Braida D, Paladini E, Griffini P, Lamperti M, Maggi A, Sala M (1996) An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. Eur J Pharmacol 302:13–20

    Article  PubMed  CAS  Google Scholar 

  • Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D, Sturchler-Pierrat C, Sommer B, Staufenbiel M, Jucker M (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 96:14088–14093

    Article  PubMed  CAS  Google Scholar 

  • Castro A, Martinez A (2001) Peripheral and dual binding site acetylcholinesterase inhibitors: Implications in treatment of Alzheimer’s disease. Mini Rev Med Chem 1:267–272

    Article  PubMed  CAS  Google Scholar 

  • Castro A, Martinez A (2006) Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 12:4377–4387

    Article  PubMed  CAS  Google Scholar 

  • Flood JF, Landry DW, Jarvik ME (1981) Cholinergic receptor interactions and their effects on long-term memory processing. Brain Res 215:177–185

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E (2001) De cholinesterase inhibitors have disease-modifying effects in Alzheimer’s disease. CNS Drugs 15:85–91

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Kazui H, Matsumoto K, Nakano Y, Yasuda M, Mori E (2005) Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease. Am J Psychiatry 162:676–682

    Article  PubMed  Google Scholar 

  • Hayashi T, Su TP (2003) Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 306:718–725

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Maurice T, Su TP (2000) Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther 293:788–798

    PubMed  CAS  Google Scholar 

  • Hohnadel E, Bouchard K, Terry AV Jr (2007) Galantamine and donepezil attenuate pharmacologically induced deficits in prepulse inhibition in rats. Neuropharmacology 52:542–515

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa NC, Alvarez A, Godoy J, Reyes A, De Ferrari GV (2000) Acetylcholinesterase–amyloid–beta-peptide interaction and Wnt signalling involvement in Abeta neurotoxicity. Acta Neurol Scand Suppl 176:53–59

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Hayako H, Ishihara Y, Marui S, Iwane M, Miyamoto M (1999) TAK-417, an acetylcholinesterase inhibitor, increases choline acetyltransferase activity in cultured rap septal cholinergic neurons. Neurosci Lett 260:5–8

    Article  PubMed  CAS  Google Scholar 

  • Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E, Abramowski D, Wiederhold KH, Sturchler-Pierrat C, Jucker M, Bergmann R, Staufenbiel M, Sommer B (2003) Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging 24:365–378

    Article  PubMed  CAS  Google Scholar 

  • Krishnan KR, Charles HC, Doraiswamy PM, Mintzer J, Weisler R, Yu X, Perdomo C, Ieni JR, Rogers S (2003) Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 160:2003–2011

    Article  PubMed  Google Scholar 

  • Lalonde R, Dumont M, Staufenbiel M, Sturchler-Pierrat C, Strazielle C (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res 956:36–44

    Article  PubMed  CAS  Google Scholar 

  • Meunier J, Ieni J, Maurice T (2006) The anti-amnestic and neuroprotective effects of donepezil against amyloid β25–35 peptide-induced toxicity in mice involve and interaction with the σ1 receptor. Br J Pharmacol 149:998–1012

    Article  PubMed  CAS  Google Scholar 

  • Mori E, Hashimoto M, Krishnan KR, Doraiswamy PM (2006) What constitutes clinical evidence for neuroprotection in Alzheimer disease: support for the cholinesterase inhibitors. Alzheimer Dis Assoc Disord 20:S19–S26

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi S, Zhao X, Marszalec W, Yeh JZ, Narahashi T (2005) Modulation of N-methyl-d-asparate receptors by donepezil in rat cortical neurons. J Pharmacol Exp Ther 315:125–135

    Article  PubMed  CAS  Google Scholar 

  • Muñez-Torrero D, Camps R (2006) Dimeric and hybrid anti-Alzheimer drug candidates. Curr Med Chem 13:399–422

    Article  Google Scholar 

  • Nakano S, Asada T, Matsuda H, Uno M, Takasaki M (2001) Donepezil hydrochloride preserves regional cerebral blood flow in patients with Alzheimer’s disease. J Nucl Med 42:1441–1445

    PubMed  CAS  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307

    Article  PubMed  CAS  Google Scholar 

  • Raskind MA, Peskind ER, Wessel T, Yuan W, Galantamine USA-1 Study Group (2000) Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology 54:2261–2268

    PubMed  CAS  Google Scholar 

  • Recanatini M, Valenti P (2004) Acetylcholinesterase inhibitors as a starting point towards improved Alzheimer’s disease therapeutics. Curr Pharm Des 10:3157–3166

    Article  PubMed  CAS  Google Scholar 

  • Sturchler-Pierrat C, Staufenbiel M (2000) Pathogenic mechanisms of Alzheimer’s disease analyzed in the APP23 transgenic mouse model. Ann N Y Acad Sci 920:134–139

    Article  PubMed  CAS  Google Scholar 

  • Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Yamaguchi T, Ozawa Y, Iwai A, Yamamoto M (1995) Effect of YM796, a novel muscarinic agonist, on the impairment of passive avoidance response in senescence-accelerated mice. Pharmacol Biochem Behav 51:623–626

    Article  PubMed  CAS  Google Scholar 

  • Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Sugimoto H, Akaike A (2006) Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology 51:474–486

    Article  PubMed  CAS  Google Scholar 

  • Tune L, Tiseo PJ, Ieni J, Perdomo C, Pratt RD, Votaw JR, Jewart RD, Hoffman JM (2003) Donepezil HCl (E2020) maintains functional brain activity in patients with Alzheimer disease: results of a 24-week, double-blind, placebo-controlled study. Am J Geriatr Psychiatry 11:169–177

    Article  PubMed  Google Scholar 

  • Van Dam D, De Deyn PP (2006a) Cognitive evaluation of disease-modifying efficacy of galantamine and memantine in the APP23 model. Eur Neuropsychopharmacol 16:59–69

    Article  PubMed  CAS  Google Scholar 

  • Van Dam D, De Deyn PP (2006b) Drug discovery in dementia: the role of rodent models. Nat Rev Drug Discov 5:956–970

    Article  PubMed  CAS  Google Scholar 

  • Van Dam D, D’Hooge R, Staufenbiel M, Van Ginneken C, Van Meir F, De Deyn PP (2003) Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci 17:388–396

    Article  PubMed  Google Scholar 

  • Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP (2005a) Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology 180:177–190

    Article  PubMed  CAS  Google Scholar 

  • Van Dam D, Marescau B, Engelborghs S, Cremers T, Mulder J, Staufenbiel M, De Deyn PP (2005b) Analysis of cholinergic markers, biogenic amines, and amino acids in the CNS of two APP overexpression mouse models. Neurochem Int 46:409–422

    Article  PubMed  CAS  Google Scholar 

  • Vloeberghs E, Van Dam D, Engelborghs S, Nagels G, Staufenbiel M, De Deyn PP (2004) Altered circadian locomotor activity in APP23 mice: a model for BPSD disturbances. Eur J Neurosci 20:2757–2766

    Article  PubMed  Google Scholar 

  • Vloeberghs E, Van Dam D, Coen K, Staufenbiel M, De Deyn PP (2006) Aggressive male APP23 mice modeling behavioral alterations in dementia. Behav Neurosci 120:1380–1383

    Article  PubMed  Google Scholar 

  • Waite JJ, Thal LJ (1995) The behavioral effects of heptylphysostigmine on rats lesioned in the nucleus basalis. Neurosci Res 21:251–259

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Tang XC (1998) Reversal of scopolamine-induced deficits in radial maze performance by (−)-huperzine A: comparison with E2020 and tacrine. Eur J Pharmacol 349:137–142

    Article  PubMed  CAS  Google Scholar 

  • Wang XD, Chen XQ, Yang HH, Hu GY (1999) Comparison of the effects of cholinesterase inhibitors on [3H]MK-801 binding in rat cerebral cortex. Neurosci Lett 272:21–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Fund for Scientific Research-Flanders (FGWO grant G.0038.05), Interuniversity Poles of Attraction (IUAP Network P6/43), agreement between Institute Born-Bunge and University of Antwerp, the Antwerp Medical Research Foundation, the Thomas Riellaerts Research Fund, Neurosearch Antwerp, and Pfizer. D.V.D. is a postdoctoral fellow of the Fund for Scientific Research–Flanders. K.C. is a PhD fellow of the Fund for Scientific Research-Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Paul De Deyn.

Additional information

Van Dam Debby and Coen Katrien equally contributed to this publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Dam, D., Coen, K. & De Deyn, P.P. Cognitive evaluation of disease-modifying efficacy of donepezil in the APP23 mouse model for Alzheimer’s disease. Psychopharmacology 197, 37–43 (2008). https://doi.org/10.1007/s00213-007-1010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-1010-x

Keywords

Navigation