Skip to main content

Advertisement

Log in

Characterization of methylphenidate self-administration and reinstatement in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Methylphenidate, which is used to treat attention deficit/hyperactivity disorder, increases extracellular dopamine by inhibiting the dopamine transporter. Methylphenidate has an abuse potential, and there are increasing reports of recreational use of methylphenidate. Little work has examined methylphenidate self-administration in rodent models.

Objectives

This work characterized intravenous methylphenidate self-administration in rats, determined whether dopamine mediates its reinforcing effects and examined the influence of route of administration on the ability of methylphenidate to reinstate extinguished drug-seeking behaviour.

Materials and methods

Rats were trained to self-administer methylphenidate (0.25 mg per infusion) via an intravenous catheter according to a fixed ratio 1 (FR1) or progressive ratio (PR) schedule. The effects of manipulating the dose of methylphenidate and of treatment with the dopamine D1 receptor antagonist SCH23390 or the dopamine D2 receptor antagonist eticlopride (both at 0.01 and 0.03 mg/kg) were examined. Finally, the ability of noncontingent administrations of methylphenidate (intraperitoneal [IP] or gavage) to reinstate extinguished drug-seeking behaviour was examined.

Results

Rats readily self-administered methylphenidate dose dependently on FR1 and PR schedules. Treatment with SCH23390 or eticlopride increased the number methylphenidate infusions taken by rats on the FR1 schedule and reduced breaking points on the PR schedule. Following extinction of drug-seeking behaviour, methylphenidate reinstated responding and was more effective at doing so when administered IP.

Conclusion

These results demonstrate that intravenous methylphenidate is a reinforcer and that its reinforcing efficacy is related to increased dopamine activity at D1 and D2 receptors. Methylphenidate reinstates drug-seeking behaviour; the route of administration modifies this response suggesting that pharmacokinetic factors are important in determining methylphenidate-induced reinstatement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achat-Mendes C, Anderson KL, Itzhak Y (2003) Methylphenidate and MDMA adolescent exposure in mice: long-lasting consequences on cocaine-induced reward and psychomotor stimulation in adulthood. Neuropharmacology 45:106–115

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C (2006) Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression. Neuropsychopharmacology 31:1946–1956

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA Jr (2002) Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci 5:13–14

    Article  PubMed  CAS  Google Scholar 

  • Anderson SM, Pierce RC (2005) Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Pharmacol Ther 106:389–403

    Article  PubMed  CAS  Google Scholar 

  • Arnold JM, Roberts DC (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57:441–447

    Article  PubMed  CAS  Google Scholar 

  • Babcock Q, Byrne T (2000) Student perceptions of methylphenidate abuse at a public liberal arts college. J Am Coll Health 49:143–145

    Article  PubMed  CAS  Google Scholar 

  • Bachtell RK, Whisler K, Karanian D, Self DW (2005) Effects of intra-nucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology (Berl) 183:41–53

    Article  CAS  Google Scholar 

  • Bergman J, Madras BK, Johnson SE, Spealman RD (1989) Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys. J Pharmacol Exp Ther 251:150–155

    PubMed  CAS  Google Scholar 

  • Bolanos CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ (2003) Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiatry 54:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Brady JV, Griffiths RR (1976) Behavioral procedures for evaluating the relative abuse potential of CNS drugs in primates. Fed Proc 35:2245–2253

    PubMed  CAS  Google Scholar 

  • Brandon CL, Marinelli M, Baker LK, White FJ (2001) Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology 25:651–661

    Article  PubMed  CAS  Google Scholar 

  • Brandon CL, Marinelli M, White FJ (2003) Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons. Biol Psychiatry 54:1338–1344

    Article  PubMed  CAS  Google Scholar 

  • Bremner JD, Krystal JH, Southwick SM, Charney DS (1996) Noradrenergic mechanisms in stress and anxiety: II. Clinical studies. Synapse 23:39–51

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Koob GF (1994) Effects of dopamine D-1 and D-2 antagonists on cocaine self-administration under different schedules of reinforcement in the rat. J Pharmacol Exp Ther 270:209–218

    PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Mague SD, Andersen SL (2003) Enduring behavioral effects of early exposure to methylphenidate in rats. Biol Psychiatry 54:1330–1337

    Article  PubMed  CAS  Google Scholar 

  • Charney DS, Woods SW, Goodman WK, Heninger GR (1987) Neurobiological mechanisms of panic anxiety: biochemical and behavioral correlates of yohimbine-induced panic attacks. Am J Psychiatry 144:1030–1036

    PubMed  CAS  Google Scholar 

  • Clarke PB, Fibiger HC (1987) Apparent absence of nicotine-induced conditioned place preference in rats. Psychopharmacology (Berl) 92:84–88

    Article  CAS  Google Scholar 

  • Collins RJ, Weeks JR, Cooper MM, Good PI, Russell RR (1984) Prediction of abuse liability of drugs using IV self-administration by rats. Psychopharmacology (Berl) 82:6–13

    Article  CAS  Google Scholar 

  • Corrigall WA, Coen KM (1991) Cocaine self-administration is increased by both D1 and D2 dopamine antagonists. Pharmacol Biochem Behav 39:799–802

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Theobald DE, Berry D, Milstein JA, Laane K, Everitt BJ, Robbins TW (2005) Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentional performance. Neuropsychopharmacology 30:525–537

    Article  PubMed  CAS  Google Scholar 

  • Davis WM, Smith SG, Khalsa JH (1975) Noradrenergic role in the self-administration of morphine or amphetamine. Pharmacol Biochem Behav 3:477–484

    Article  PubMed  CAS  Google Scholar 

  • de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology (Berl) 75:134–143

    Article  Google Scholar 

  • Di Ciano P, Coury A, Depoortere RY, Egilmez Y, Lane JD, Emmett-Oglesby MW, Lepiane FG, Phillips AG, Blaha CD (1995) Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behav Pharmacol 6:311–322

    Article  PubMed  Google Scholar 

  • Epstein DH, Preston KL, Stewart J, Shaham Y (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189:1–16

    Article  CAS  Google Scholar 

  • Fletcher PJ, Korth KM, Chambers JW (1999) Depletion of brain serotonin following intra-raphe injections of 5,7-dihydroxytryptamine does not alter d-amphetamine self-administration across different schedule and access conditions. Psychopharmacology (Berl) 146:185–193

    Article  CAS  Google Scholar 

  • Fletcher PJ, Grottick AJ, Higgins GA (2002) Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 27:576–586

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Tenn CC, Rizos Z, Lovic V, Kapur S (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology (Berl) 183:190–200

    Article  CAS  Google Scholar 

  • Fletcher PJ, Rizos Z, Sinyard J, Tampakeras M, Higgins GA (2008) The 5-HT(2C) receptor agonist Ro60-0175 reduces cocaine self-administration and reinstatement induced by the stressor yohimbine, and contextual cues. Neuropsychopharmacology 33:1402–1412

    Google Scholar 

  • Gasior M, Bergman J, Kallman MJ, Paronis CA (2005) Evaluation of the reinforcing effects of monoamine reuptake inhibitors under a concurrent schedule of food and i.v. drug delivery in rhesus monkeys. Neuropsychopharmacology 30:758–764

    PubMed  CAS  Google Scholar 

  • Gatley SJ, Pan D, Chen R, Chaturvedi G, Ding YS (1996) Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci 58:231–239

    PubMed  CAS  Google Scholar 

  • Haile CN, Kosten TA (2001) Differential effects of D1- and D2-like compounds on cocaine self-administration in Lewis and Fischer 344 inbred rats. J Pharmacol Exp Ther 299:509–518

    PubMed  CAS  Google Scholar 

  • Hemby SE, Smith JE, Dworkin SI (1996) The effects of eticlopride and naltrexone on responding maintained by food, cocaine, heroin and cocaine/heroin combinations in rats. J Pharmacol Exp Ther 277:1247–1258

    PubMed  CAS  Google Scholar 

  • Heyser CJ, Pelletier M, Ferris JS (2004) The effects of methylphenidate on novel object exploration in weanling and periadolescent rats. Ann NY Acad Sci 1021:465–469

    Article  PubMed  CAS  Google Scholar 

  • Jaffe JH, Cascella NG, Kumor KM, Sherer MA (1989) Cocaine-induced cocaine craving. Psychopharmacology (Berl) 97:59–64

    Article  CAS  Google Scholar 

  • Kankaanpaa A, Meririnne E, Seppala T (2002) 5-HT3 receptor antagonist MDL 72222 attenuates cocaine- and mazindol-, but not methylphenidate-induced neurochemical and behavioral effects in the rat. Psychopharmacology (Berl) 159:341–350

    Article  CAS  Google Scholar 

  • Karila L, Gorelick D, Weinstein A, Noble F, Benyamina A, Coscas S, Blecha L, Lowenstein W, Martinot JL, Reynaud M, Lepine JP (2008) New treatments for cocaine dependence: a focused review. Int J Neuropsychopharmacol 11:425–438

    Article  PubMed  CAS  Google Scholar 

  • Khroyan TV, Barrett-Larimore RL, Rowlett JK, Spealman RD (2000) Dopamine D1- and D2-like receptor mechanisms in relapse to cocaine-seeking behavior: effects of selective antagonists and agonists. J Pharmacol Exp Ther 294:680–687

    PubMed  CAS  Google Scholar 

  • Khroyan TV, Platt DM, Rowlett JK, Spealman RD (2003) Attenuation of relapse to cocaine seeking by dopamine D1 receptor agonists and antagonists in non-human primates. Psychopharmacology (Berl) 168:124–131

    Article  CAS  Google Scholar 

  • Klein-Schwartz W, McGrath J (2003) Poison centers’ experience with methylphenidate abuse in pre-teens and adolescents. J Am Acad Child Adolesc Psychiatry 42:288–294

    Article  PubMed  Google Scholar 

  • Kollins SH (2003) Comparing the abuse potential of methylphenidate versus other stimulants: a review of available evidence and relevance to the ADHD patient. J Clin Psychiatry 64(Suppl 11):14–18

    PubMed  CAS  Google Scholar 

  • Kollins SH, MacDonald EK, Rush CR (2001) Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav 68:611–627

    Article  PubMed  CAS  Google Scholar 

  • Kroutil LA, Van Brunt DL, Herman-Stahl MA, Heller DC, Bray RM, Penne MA (2006) Nonmedical use of prescription stimulants in the United States. Drug Alcohol Depend 84:135–143

    Article  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68:2032–2037

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther 296:876–883

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 22:7264–7271

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (2005) Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse. Biol Psychiatry 57:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Tiefenbacher S, Platt DM, Spealman RD (2004) Pharmacological blockade of alpha2-adrenoceptors induces reinstatement of cocaine-seeking behavior in squirrel monkeys. Neuropsychopharmacology 29:686–693

    Article  PubMed  CAS  Google Scholar 

  • Lile JA, Wang Z, Woolverton WL, France JE, Gregg TC, Davies HM, Nader MA (2003) The reinforcing efficacy of psychostimulants in rhesus monkeys: the role of pharmacokinetics and pharmacodynamics. J Pharmacol Exp Ther 307:356–366

    Article  PubMed  CAS  Google Scholar 

  • Llana ME, Crismon ML (1999) Methylphenidate: increased abuse or appropriate use? J Am Pharm Assoc (Wash) 39:526–530

    CAS  Google Scholar 

  • Lyness WH, Friedle NM, Moore KE (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration. Pharmacol Biochem Behav 11:553–556

    Article  PubMed  CAS  Google Scholar 

  • Mague SD, Andersen SL, Carlezon WA Jr (2005) Early developmental exposure to methylphenidate reduces cocaine-induced potentiation of brain stimulation reward in rats. Biol Psychiatry 57:120–125

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Ortmann R, Fibiger HC (1985) Place preference conditioning with methylphenidate and nomifensine. Brain Res 332:59–67

    Article  PubMed  CAS  Google Scholar 

  • McCabe SE, Teter CJ, Boyd CJ, Guthrie SK (2004) Prevalence and correlates of illicit methylphenidate use among 8th, 10th, and 12th grade students in the United States, 2001. J Adolesc Health 35:501–504

    PubMed  Google Scholar 

  • Meririnne E, Kankaanpaa A, Seppala T (2001) Rewarding properties of methylphenidate: sensitization by prior exposure to the drug and effects of dopamine D1- and D2-receptor antagonists. J Pharmacol Exp Ther 298:539–550

    PubMed  CAS  Google Scholar 

  • Mithani S, Martin-Iverson MT, Phillips AG, Fibiger HC (1986) The effects of haloperidol on amphetamine- and methylphenidate-induced conditioned place preferences and locomotor activity. Psychopharmacology (Berl) 90:247–252

    Article  CAS  Google Scholar 

  • Nielsen JA, Duda NJ, Mokler DJ, Moore KE (1984) Self-administration of central stimulants by rats: a comparison of the effects of d-amphetamine, methylphenidate and McNeil 4612. Pharmacol Biochem Behav 20:227–232

    Article  PubMed  CAS  Google Scholar 

  • Norman AB, Norman MK, Hall JF, Tsibulsky VL (1999) Priming threshold: a novel quantitative measure of the reinstatement of cocaine self-administration. Brain Res 831:165–174

    Article  PubMed  CAS  Google Scholar 

  • Pettit HO, Justice JB Jr (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 34:899–904

    Article  PubMed  CAS  Google Scholar 

  • Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  PubMed  CAS  Google Scholar 

  • Risner ME, Jones BE (1975) Self-administration of CNS stimulants by dog. Psychopharmacologia 43:207–213

    Article  PubMed  CAS  Google Scholar 

  • Roberts DC, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    PubMed  CAS  Google Scholar 

  • Robinson TE, Gorny G, Mitton E, Kolb B (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39:257–266

    Article  PubMed  CAS  Google Scholar 

  • Rush CR, Baker RW (2001) Behavioral pharmacological similarities between methylphenidate and cocaine in cocaine abusers. Exp Clin Psychopharmacol 9:59–73

    Article  PubMed  CAS  Google Scholar 

  • Rush CR, Essman WD, Simpson CA, Baker RW (2001) Reinforcing and subject-rated effects of methylphenidate and d-amphetamine in non-drug-abusing humans. J Clin Psychopharmacol 21:273–286

    Article  PubMed  CAS  Google Scholar 

  • Safer DJ, Zito JM, Fine EM (1996) Increased methylphenidate usage for attention deficit disorder in the 1990s. Pediatrics 98:1084–1088

    PubMed  CAS  Google Scholar 

  • Schenk S, Gittings D (2003) Effects of SCH 23390 and eticlopride on cocaine-seeking produced by cocaine and WIN 35,428 in rats. Psychopharmacology (Berl) 168:118–123

    Article  CAS  Google Scholar 

  • Schenk S, Partridge B (1999) Cocaine-seeking produced by experimenter-administered drug injections: dose–effect relationships in rats. Psychopharmacology (Berl) 147:285–290

    Article  CAS  Google Scholar 

  • Schmidt HD, Anderson SM, Famous KR, Kumaresan V, Pierce RC (2005) Anatomy and pharmacology of cocaine priming-induced reinstatement of drug seeking. Eur J Pharmacol 526:65–76

    Article  PubMed  CAS  Google Scholar 

  • Sellings LH, McQuade LE, Clarke PB (2006) Characterization of dopamine-dependent rewarding and locomotor stimulant effects of intravenously-administered methylphenidate in rats. Neuroscience 141:1457–1468

    Article  PubMed  CAS  Google Scholar 

  • Shepard JD, Bossert JM, Liu SY, Shaham Y (2004) The anxiogenic drug yohimbine reinstates methamphetamine seeking in a rat model of drug relapse. Biol Psychiatry 55:1082–1089

    Article  PubMed  CAS  Google Scholar 

  • Stoops WW, Glaser PE, Fillmore MT, Rush CR (2004) Reinforcing, subject-rated, performance and physiological effects of methylphenidate and d-amphetamine in stimulant abusing humans. J Psychopharmacol 18:534–543

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Rebec GV (2005) The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking behavior in rats. Psychopharmacology (Berl) 177:315–323

    Article  CAS  Google Scholar 

  • Swanson JM, Volkow ND (2002) Pharmacokinetic and pharmacodynamic properties of stimulants: implications for the design of new treatments for ADHD. Behav Brain Res 130:73–78

    Article  PubMed  CAS  Google Scholar 

  • Swanson JM, Volkow ND (2003) Serum and brain concentrations of methylphenidate: implications for use and abuse. Neurosci Biobehav Rev 27:615–621

    Article  PubMed  CAS  Google Scholar 

  • Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ (2006) Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration. Pharmacotherapy 26:1501–1510

    Article  PubMed  Google Scholar 

  • Thanos PK, Michaelides M, Benveniste H, Wang GJ, Volkow ND (2007) Effects of chronic oral methylphenidate on cocaine self-administration and striatal dopamine D2 receptors in rodents. Pharmacol Biochem Behav 87:426–433

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Swanson JM (2003) Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry 160:1909–1918

    Article  PubMed  Google Scholar 

  • Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley JS, Dewey S, Ashby C, Liebermann J, Hitzemann R et al (1995) Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain. Arch Gen Psychiatry 52:456–463

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Fischman M, Foltin R, Abumrad NN, Gatley SJ, Logan J, Wong C, Gifford A, Ding YS, Hitzemann R, Pappas N (1999a) Methylphenidate and cocaine have a similar in vivo potency to block dopamine transporters in the human brain. Life Sci 65:PL7–PL12

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Wong C, Hitzemann R, Pappas NR (1999b) Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J Pharmacol Exp Ther 291:409–415

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ, Gifford A, Zhu W, Swanson JM (2002) Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43:181–187

    Article  PubMed  CAS  Google Scholar 

  • Ward AS, Li DH, Luedtke RR, Emmett-Oglesby MW (1996) Variations in cocaine self-administration by inbred rat strains under a progressive-ratio schedule. Psychopharmacology (Berl) 127:204–212

    CAS  Google Scholar 

  • Wee S, Woolverton WL (2004) Evaluation of the reinforcing effects of atomoxetine in monkeys: comparison to methylphenidate and desipramine. Drug Alcohol Depend 75:271–276

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL (1987) Evaluation of the role of norepinephrine in the reinforcing effects of psychomotor stimulants in rhesus monkeys. Pharmacol Biochem Behav 26:835–839

    Article  PubMed  CAS  Google Scholar 

  • Wu LT, Pilowsky DJ, Schlenger WE, Galvin DM (2007) Misuse of methamphetamine and prescription stimulants among youths and young adults in the community. Drug Alcohol Depend 89:195–205

    Article  PubMed  Google Scholar 

  • Zhang XY, Kosten TA (2005) Prazosin, an alpha-1 adrenergic antagonist, reduces cocaine-induced reinstatement of drug-seeking. Biol Psychiatry 57:1202–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

LCPB was supported by a Canada Graduate Scholarship from NSERC. CLB was supported by a CIHR Canada Graduate Scholarships Master’s Award. The work was supported by operating grants to PJF from NSERC and CIHR. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Fletcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botly, L.C.P., Burton, C.L., Rizos, Z. et al. Characterization of methylphenidate self-administration and reinstatement in the rat. Psychopharmacology 199, 55–66 (2008). https://doi.org/10.1007/s00213-008-1093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1093-z

Keywords

Navigation