Skip to main content
Log in

Involvement of nucleus accumbens dopamine D1 receptors in ethanol drinking, ethanol-induced conditioned place preference, and ethanol-induced psychomotor sensitization in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine D1 receptor (D1R) signaling has been associated to ethanol consumption and reward in laboratory animals.

Objectives

Here, we hypothesize that this receptor, which is located within the nucleus accumbens (NAc) neurons, modulates alcohol reward mechanisms.

Methods

To test this hypothesis, we measured alcohol consumption and ethanol-induced psychomotor sensitization and conditioned place preference (CPP) in mice that received bilateral microinjections of small interference RNA (siRNA)-expressing lentiviral vectors (LV-siD1R) producing D1R knock-down. The other group received control (LV-Mock) viral vectors into the NAc.

Results

There were no differences in the total fluid consumed and also no differences in the amount of ethanol consumed between groups prior to surgery. However, after surgery, the LV-siD1R group consumed less ethanol than the control group. This difference was not associated to taste neophobia. In addition, results have shown that down-regulation of endogenous D1R using viral-mediated siRNA in the NAc significantly decreased ethanol-induced behavioral sensitization as well as acquisition, but not expression, of ethanol-induced place preference.

Conclusions

We conclude that decreased D1R expression into the NAc led to reduced ethanol rewarding properties, thereby leading to lower voluntary ethanol consumption. Together, these findings demonstrate that the D1 receptor pathway within the NAc controls ethanol reward and intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CPP:

Conditioned place preference

D1R:

Dopamine D1 receptor

GPCR:

G protein-coupled receptors

EtOH:

Ethanol

LV:

Lentiviral vector

NAc:

Nucleus accumbens

siRNA:

Small interference RNA

VTA:

Ventral tegmental area

References

  • Abrahao KP, Quadros IM, Souza-Formigoni ML (2011) Nucleus accumbens dopamine D receptors regulate the expression of ethanol-induced behavioural sensitization. Int J Neuropsychopharmacol 14:175–185

    Article  PubMed  CAS  Google Scholar 

  • Akins CK, Levens N, Prather R, Cooper B, Fritz T (2004) Dose-dependent cocaine place conditioning and D1 dopamine antagonist effects in male Japanese quail. Physiol Behav 82:309–315

    Article  PubMed  CAS  Google Scholar 

  • Altier N, Stewart J (1999) The role of dopamine in the nucleus accumbens in analgesia. Life Sci 65:2269–2287

    Article  PubMed  CAS  Google Scholar 

  • Andrzejewski ME, Spencer RC, Kelley AE (2005) Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala. Neuroscience 135:335–345

    Article  PubMed  CAS  Google Scholar 

  • Arias-Carrion O, Stamelou M, Murillo-Rodriguez E, Menendez-Gonzalez M, Poppel E (2010) Dopaminergic reward system: a short integrative review. Int Arch Med 3:24

    Article  PubMed  Google Scholar 

  • Badanich KA, Maldonado AM, Kirstein CL (2007) Chronic ethanol exposure during adolescence increases basal dopamine in the nucleus accumbens septi during adulthood. Alcohol Clin Exp Res 31:895–900

    Article  PubMed  CAS  Google Scholar 

  • Badiani A, Browman KE, Robinson TE (1995) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res 674:291–298

    Article  PubMed  CAS  Google Scholar 

  • Bahi A (2011) The pre-synaptic metabotropic glutamate receptor 7 "mGluR7" is a critical modulator of ethanol sensitivity in mice. Neuroscience 199:13–23

    Article  PubMed  CAS  Google Scholar 

  • Bahi A, Fizia K, Dietz M, Gasparini F, Flor PJ (2011) Pharmacological modulation of mGluR7 with AMN082 and MMPIP exerts specific influences on alcohol consumption and preference in rats. Addict Biol. doi:10.1111/j.1369-1600.2010.00310.x

  • Bahi A, Dreyer JL (2008) Overexpression of plasminogen activators in the nucleus accumbens enhances cocaine-, amphetamine- and morphine-induced reward and behavioral sensitization. Genes Brain Behav 7:244–256

    Article  PubMed  CAS  Google Scholar 

  • Bahi A, Dreyer JL (2011) Involvement of tissue plasminogen activator "tPA" in ethanol-induced locomotor sensitization and conditioned-place preference. Behav Brain Res 226:250–258

    Article  PubMed  CAS  Google Scholar 

  • Bahi A, Boyer F, Gumy C, Kafri T, Dreyer JL (2004a) In vivo gene delivery of urokinase-type plasminogen activator with regulatable lentivirus induces behavioural changes in chronic cocaine administration. Eur J Neurosci 20:3473–3488

    Article  PubMed  Google Scholar 

  • Bahi A, Boyer F, Kafri T, Dreyer JL (2004b) CD81-induced behavioural changes during chronic cocaine administration: in vivo gene delivery with regulatable lentivirus. Eur J Neurosci 19:1621–1633

    Article  PubMed  Google Scholar 

  • Bahi A, Boyer F, Bussard G, Dreyer JL (2005a) Silencing dopamine D3-receptors in the nucleus accumbens shell in vivo induces changes in cocaine-induced hyperlocomotion. Eur J Neurosci 21:3415–3426

    Article  PubMed  Google Scholar 

  • Bahi A, Boyer F, Kolira M, Dreyer JL (2005b) In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. J Neurochem 92:1243–1255

    Article  PubMed  CAS  Google Scholar 

  • Bahi A, Boyer F, Kafri T, Dreyer JL (2006) Silencing urokinase in the ventral tegmental area in vivo induces changes in cocaine-induced hyperlocomotion. J Neurochem 98:1619–1631

    Article  PubMed  CAS  Google Scholar 

  • Bahi A, Boyer F, Chandrasekar V, Dreyer JL (2008a) Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology (Berl) 199:169–182

    Article  CAS  Google Scholar 

  • Bahi A, Kusnecov A, Dreyer JL (2008b) The role of tissue-type plasminogen activator system in amphetamine-induced conditional place preference extinction and reinstatement. Neuropsychopharmacology 33:2726–2734

    Article  PubMed  CAS  Google Scholar 

  • Bahi A, Kusnecov AW, Dreyer JL (2008c) Effects of urokinase-type plasminogen activator in the acquisition, expression and reinstatement of cocaine-induced conditioned-place preference. Behav Brain Res 191:17–25

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Fuchs RA, Specio SE, Khroyan TV, Neisewander JL (1998) Effects of intraaccumbens administration of SCH-23390 on cocaine-induced locomotion and conditioned place preference. Synapse 30:181–193

    Article  PubMed  CAS  Google Scholar 

  • Ball DM, Murray RM (1994) Genetics of alcohol misuse. Br Med Bull 50:18–35

    PubMed  CAS  Google Scholar 

  • Bassareo V, De Luca MA, Aresu M, Aste A, Ariu T, Di Chiara G (2003) Differential adaptive properties of accumbens shell dopamine responses to ethanol as a drug and as a motivational stimulus. Eur J Neurosci 17:1465–1472

    Article  PubMed  Google Scholar 

  • Berglind WJ, Case JM, Parker MP, Fuchs RA, See RE (2006) Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine–cue associations necessary for cue-induced reinstatement of cocaine-seeking. Neuroscience 137:699–706

    Article  PubMed  CAS  Google Scholar 

  • Blanchard BA, Steindorf S, Wang S, Glick SD (1993) Sex differences in ethanol-induced dopamine release in nucleus accumbens and in ethanol consumption in rats. Alcohol Clin Exp Res 17:968–973

    Article  PubMed  CAS  Google Scholar 

  • Bolos AM, Dean M, Lucas-Derse S, Ramsburg M, Brown GL, Goldman D (1990) Population and pedigree studies reveal a lack of association between the dopamine D2 receptor gene and alcoholism. Jama 264:3156–3160

    Article  PubMed  CAS  Google Scholar 

  • Bordet R (2004) Central dopamine receptors: general considerations (part 1). Rev Neurol (Paris) 160:862–870

    Article  CAS  Google Scholar 

  • Broadbent J, Kampmueller KM, Koonse SA (2005) Role of dopamine in behavioral sensitization to ethanol in DBA/2 J mice. Alcohol 35:137–148

    Article  PubMed  CAS  Google Scholar 

  • Bustamante D, Quintanilla ME, Tampier L, Gonzalez-Lira V, Israel Y, Herrera-Marschitz M (2008) Ethanol induces stronger dopamine release in nucleus accumbens (shell) of alcohol-preferring (bibulous) than in alcohol-avoiding (abstainer) rats. Eur J Pharmacol 591:153–158

    Article  PubMed  CAS  Google Scholar 

  • Caille I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730:17–31

    PubMed  CAS  Google Scholar 

  • Camarini R, Marcourakis T, Teodorov E, Yonamine M, Calil HM (2011) Ethanol-induced sensitization depends preferentially on D1 rather than D2 dopamine receptors. Pharmacol Biochem Behav 98:173–180

    Article  PubMed  CAS  Google Scholar 

  • Casu MA, Colombo G, Gessa GL, Pani L (2002a) Reduced TH-immunoreactive fibers in the limbic system of Sardinian alcohol-preferring rats. Brain Res 924:242–251

    Article  PubMed  CAS  Google Scholar 

  • Casu MA, Dinucci D, Colombo G, Gessa GL, Pani L (2002b) Reduced DAT- and DBH-immunostaining in the limbic system of Sardinian alcohol-preferring rats. Brain Res 948:192–202

    Article  PubMed  CAS  Google Scholar 

  • Chaudhri N, Sahuque LL, Janak PH (2009) Ethanol seeking triggered by environmental context is attenuated by blocking dopamine D1 receptors in the nucleus accumbens core and shell in rats. Psychopharmacology (Berl) 207:303–314

    Article  CAS  Google Scholar 

  • Cohen C, Perrault G, Sanger DJ (1997) Evidence for the involvement of dopamine receptors in ethanol-induced hyperactivity in mice. Neuropharmacology 36:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Cohen C, Perrault G, Sanger DJ (1999) Effects of D1 dopamine receptor agonists on oral ethanol self-administration in rats: comparison with their efficacy to produce grooming and hyperactivity. Psychopharmacology (Berl) 142:102–110

    Article  CAS  Google Scholar 

  • Cooper DC (2002) The significance of action potential bursting in the brain reward circuit. Neurochem Int 41:333–340

    Article  PubMed  CAS  Google Scholar 

  • Cott J, Carlsson A, Engel J, Lindqvist M (1976) Suppression of ethanol-induced locomotor stimulation by GABA-like drugs. Naunyn Schmiedebergs Arch Pharmacol 295:203–209

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Li KY, Zhou C, Ye JH (2009) Ethanol enhances glutamate transmission by retrograde dopamine signaling in a postsynaptic neuron/synaptic bouton preparation from the ventral tegmental area. Neuropsychopharmacology 34:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (1997) Alcohol and dopamine. Alcohol Health Res World 21:108–114

    PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1985) Ethanol preferentially stimulates dopamine release in the nucleus accumbens of freely moving rats. Eur J Pharmacol 115:131–132

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed  Google Scholar 

  • D'Souza MS, Ikegami A, Olsen CM, Duvauchelle CL (2003) Chronic D1 agonist and ethanol coadministration facilitate ethanol-mediated behaviors. Pharmacol Biochem Behav 76:335–342

    Article  PubMed  CAS  Google Scholar 

  • Dyr W, McBride WJ, Lumeng L, Li TK, Murphy JM (1993) Effects of D1 and D2 dopamine receptor agents on ethanol consumption in the high-alcohol-drinking (HAD) line of rats. Alcohol 10:207–212

    Article  PubMed  CAS  Google Scholar 

  • Eiler WJ 2nd, Seyoum R, Foster KL, Mailey C, June HL (2003) D1 dopamine receptor regulates alcohol-motivated behaviors in the bed nucleus of the stria terminalis in alcohol-preferring (P) rats. Synapse 48:45–56

    Article  PubMed  CAS  Google Scholar 

  • El-Ghundi M, George SR, Drago J, Fletcher PJ, Fan T, Nguyen T, Liu C, Sibley DR, Westphal H, O'Dowd BF (1998) Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Eur J Pharmacol 353:149–158

    Article  PubMed  CAS  Google Scholar 

  • Elliot EE, Sibley DR, Katz JL (2003) Locomotor and discriminative-stimulus effects of cocaine in dopamine D5 receptor knockout mice. Psychopharmacology (Berl) 169:161–168

    Article  CAS  Google Scholar 

  • Erickson CK, Kochhar A (1985) An animal model for low dose ethanol-induced locomotor stimulation: behavioral characteristics. Alcohol Clin Exp Res 9:310–314

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (1996) The mouse brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Frye GD, Breese GR (1981) An evaluation of the locomotor stimulating action of ethanol in rats and mice. Psychopharmacology (Berl) 75:372–379

    Article  CAS  Google Scholar 

  • Gonzales RA, Job MO, Doyon WM (2004) The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 103:121–146

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (2000) The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 95(Suppl 2):S119–S128

    PubMed  Google Scholar 

  • Gremel CM, Cunningham CL (2009) Involvement of amygdala dopamine and nucleus accumbens NMDA receptors in ethanol-seeking behavior in mice. Neuropsychopharmacology 34:1443–1453

    Article  PubMed  CAS  Google Scholar 

  • Guan LC, Robinson TE, Becker JB (1985) Sensitization of rotational behavior produced by a single exposure to cocaine. Pharmacol Biochem Behav 22:901–903

    Article  PubMed  CAS  Google Scholar 

  • Hamdi A, Prasad C (1993) Bidirectional changes in striatal D1-dopamine receptor density during chronic ethanol intake. Life Sci 52:251–257

    Article  PubMed  CAS  Google Scholar 

  • Herz A (1997) Endogenous opioid systems and alcohol addiction. Psychopharmacology (Berl) 129:99–111

    Article  CAS  Google Scholar 

  • Hnasko TS, Sotak BN, Palmiter RD (2007) Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J Neurosci 27:12484–12488

    Article  PubMed  CAS  Google Scholar 

  • Hodge CW, Samson HH, Chappelle AM (1997) Alcohol self-administration: further examination of the role of dopamine receptors in the nucleus accumbens. Alcohol Clin Exp Res 21:1083–1091

    PubMed  CAS  Google Scholar 

  • Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219–228

    PubMed  CAS  Google Scholar 

  • Jerlhag E, Landgren S, Egecioglu E, Dickson SL, Engel JA (2011) The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol 45:341–347

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244

    Article  PubMed  CAS  Google Scholar 

  • Kiianmaa K, Nurmi M, Nykanen I, Sinclair JD (1995) Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol-preferring AA and alcohol-avoiding ANA rats. Pharmacol Biochem Behav 52:29–34

    Article  PubMed  CAS  Google Scholar 

  • Kohnke MD (2008) Approach to the genetics of alcoholism: a review based on pathophysiology. Biochem Pharmacol 75:160–177

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Weiss F (1992) Neuropharmacology of cocaine and ethanol dependence. Recent Dev Alcohol 10:201–233

    PubMed  CAS  Google Scholar 

  • Larsson A, Engel JA (2004) Neurochemical and behavioral studies on ethanol and nicotine interactions. Neurosci Biobehav Rev 27:713–720

    Article  PubMed  CAS  Google Scholar 

  • Le Foll B, Gallo A, Le Strat Y, Lu L, Gorwood P (2009) Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav Pharmacol 20:1–17

    Article  PubMed  CAS  Google Scholar 

  • Li TK (2000) Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. J Stud Alcohol 61:5–12

    PubMed  CAS  Google Scholar 

  • Liao RM, Chang YH, Wang SH (1998) Influence of SCH23390 and spiperone on the expression of conditioned place preference induced by d-amphetamine or cocaine in the rat. Chin J Physiol 41:85–92

    PubMed  CAS  Google Scholar 

  • Liu X, Weiss F (2002) Reversal of ethanol-seeking behavior by D1 and D2 antagonists in an animal model of relapse: differences in antagonist potency in previously ethanol-dependent versus nondependent rats. J Pharmacol Exp Ther 300:882–889

    Article  PubMed  CAS  Google Scholar 

  • Lograno DE, Matteo F, Trabucchi M, Govoni S, Cagiano R, Lacomba C, Cuomo V (1993) Effects of chronic ethanol intake at a low dose on the rat brain dopaminergic system. Alcohol 10:45–49

    Article  PubMed  CAS  Google Scholar 

  • Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau JM, Valjent E, Herve D, Girault JA (2009) Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One 4:e4770

    Article  PubMed  CAS  Google Scholar 

  • Matchett JA, Erickson CK (1977) Alteration of ethanol-induced changes in locomotor activity by adrenergic blockers in mice. Psychopharmacology (Berl) 52:201–206

    Article  CAS  Google Scholar 

  • Matsuzawa S, Suzuki T, Misawa M, Nagase H (1999) Involvement of dopamine D(1) and D(2) receptors in the ethanol-associated place preference in rats exposed to conditioned fear stress. Brain Res 835:298–305

    Article  PubMed  CAS  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    Article  PubMed  CAS  Google Scholar 

  • McCreary AC, Handley SL (1999) The thyrotrophin-releasing hormone analogue MK771 induces tic-like behaviours: the effects of dopamine D1 and D2 receptor antagonists. Eur J Pharmacol 369:1–9

    Article  PubMed  CAS  Google Scholar 

  • Melendez RI, Rodd ZA, McBride WJ, Murphy JM (2005) Dopamine receptor regulation of ethanol intake and extracellular dopamine levels in the ventral pallidum of alcohol preferring (P) rats. Drug Alcohol Depend 77:293–301

    Article  PubMed  CAS  Google Scholar 

  • Muly EC, Maddox M, Khan ZU (2010) Distribution of D1 and D5 dopamine receptors in the primate nucleus accumbens. Neuroscience 169:1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Nestby P, Vanderschuren LJ, De Vries TJ, Mulder AH, Wardeh G, Hogenboom F, Schoffelmeer AN (1999) Unrestricted free-choice ethanol self-administration in rats causes long-term neuroadaptations in the nucleus accumbens and caudate putamen. Psychopharmacology (Berl) 141:307–314

    Article  CAS  Google Scholar 

  • Newman TK, Parker CC, Suomi SJ, Goldman D, Barr CS, Higley JD (2009) DRD1 5'UTR variation, sex and early infant stress influence ethanol consumption in rhesus macaques. Genes Brain Behav 8:626–630

    Article  PubMed  CAS  Google Scholar 

  • Ng GY, George SR (1994) Dopamine receptor agonist reduces ethanol self-administration in the ethanol-preferring C57BL/6 J inbred mouse. Eur J Pharmacol 269:365–374

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A, Amalric M (2002) [Dopaminergic receptors: structural features and functional implications]. Rev Neurol (Paris) 158(Spec no 1):S59–S68

    Google Scholar 

  • Nurmi M, Sinclair JD, Kiianmaa K (1998) Dopamine release during ethanol drinking in AA rats. Alcohol Clin Exp Res 22:1628–1633

    Article  PubMed  CAS  Google Scholar 

  • Oreland S, Raudkivi K, Oreland L, Harro J, Arborelius L, Nylander I (2011) Ethanol-induced effects on the dopamine and serotonin systems in adult Wistar rats are dependent on early-life experiences. Brain Res 1405:57–68

    Article  PubMed  CAS  Google Scholar 

  • Ortiz O, Delgado-Garcia JM, Espadas I, Bahi A, Trullas R, Dreyer JL, Gruart A, Moratalla R (2010) Associative learning and CA3-CA1 synaptic plasticity are impaired in D1R null, Drd1a−/− mice and in hippocampal siRNA silenced Drd1a mice. J Neurosci 30:12288–12300

    Article  PubMed  CAS  Google Scholar 

  • Phillips TJ, Shen EH (1996) Neurochemical bases of locomotion and ethanol stimulant effects. Int Rev Neurobiol 39:243–282

    Article  PubMed  CAS  Google Scholar 

  • Phillips TJ, Brown KJ, Burkhart-Kasch S, Wenger CD, Kelly MA, Rubinstein M, Grandy DK, Low MJ (1998) Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat Neurosci 1:610–615

    Article  PubMed  CAS  Google Scholar 

  • Podda MV, Riccardi E, D'Ascenzo M, Azzena GB, Grassi C (2010) Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K + currents through a cAMP-dependent protein kinase A-independent mechanism. Neuroscience 167:678–690

    Article  PubMed  CAS  Google Scholar 

  • Ruskin DN, Rawji SS, Walters JR (1998) Effects of full D1 dopamine receptor agonists on firing rates in the globus pallidus and substantia nigra pars compacta in vivo: tests for D1 receptor selectivity and comparisons to the partial agonist SKF 38393. J Pharmacol Exp Ther 286:272–281

    PubMed  CAS  Google Scholar 

  • Sander T, Ball D, Murray R, Patel J, Samochowiec J, Winterer G, Rommelspacher H, Schmidt LG, Loh EW (1999) Association analysis of sequence variants of GABA(A) alpha6, beta2, and gamma2 gene cluster and alcohol dependence. Alcohol Clin Exp Res 23:427–431

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HD, Pierce RC (2006) Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Neuroscience 142:451–461

    Article  PubMed  CAS  Google Scholar 

  • Sershen H, Hashim A, Lajtha A (2010) Differences between nicotine and cocaine-induced conditioned place preferences. Brain Res Bull 81:120–124

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Heidbreder C (1995) Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. J Pharmacol Exp Ther 273:808–815

    PubMed  CAS  Google Scholar 

  • Sibley DR (1999) New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 39:313–341

    Article  PubMed  CAS  Google Scholar 

  • Silvestre JS, O'Neill MF, Fernandez AG, Palacios JM (1996) Effects of a range of dopamine receptor agonists and antagonists on ethanol intake in the rat. Eur J Pharmacol 318:257–265

    Article  PubMed  CAS  Google Scholar 

  • Thomas GJ, Harper CG, Dodd PR (1998) Expression of GABA(A) receptor isoform genes in the cerebral cortex of cirrhotic and alcoholic cases assessed by S1 nuclease protection assays. Neurochem Int 32:375–385

    Article  PubMed  CAS  Google Scholar 

  • Tiihonen J, Kuikka J, Bergstrom K, Hakola P, Karhu J, Ryynanen OP, Fohr J (1995) Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics. Nat Med 1:654–657

    Article  PubMed  CAS  Google Scholar 

  • Tyndale RF (2003) Genetics of alcohol and tobacco use in humans. Ann Med 35:94–121

    Article  PubMed  CAS  Google Scholar 

  • Velasco M, Luchsinger A (1998) Dopamine: pharmacologic and therapeutic aspects. Am J Ther 5:37–43

    Article  PubMed  CAS  Google Scholar 

  • Velasco M, Contreras F, Cabezas GA, Bolivar A, Fouillioux C, Hernandez R (2002) Dopaminergic receptors: a new antihypertensive mechanism. J Hypertens Suppl 20:S55–S58

    Article  PubMed  CAS  Google Scholar 

  • Verheij MM, Cools AR (2008) Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 585:228–244

    Article  PubMed  CAS  Google Scholar 

  • Weiss F, Lorang MT, Bloom FE, Koob GF (1993) Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J Pharmacol Exp Ther 267:250–258

    PubMed  CAS  Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35:227–263

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1988) The neurobiology of craving: implications for the understanding and treatment of addiction. J Abnorm Psychol 97:118–132

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Hoffman DC (1992) Localization of drug reward mechanisms by intracranial injections. Synapse 10:247–263

    Article  PubMed  CAS  Google Scholar 

  • Witkin JM, Savtchenko N, Mashkovsky M, Beekman M, Munzar P, Gasior M, Goldberg SR, Ungard JT, Kim J, Shippenberg T, Chefer V (1999) Behavioral, toxic, and neurochemical effects of sydnocarb, a novel psychomotor stimulant: comparisons with methamphetamine. J Pharmacol Exp Ther 288:1298–1310

    PubMed  CAS  Google Scholar 

  • Xiao C, Zhou C, Atlas G, Delphin E, Ye JH (2008a) Labetalol facilitates GABAergic transmission to rat periaqueductal gray neurons via antagonizing beta1-adrenergic receptors—a possible mechanism underlying labetalol-induced analgesia. Brain Res 1198:34–43

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Zhou C, Li K, Davies DL, Ye JH (2008b) Purinergic type 2 receptors at GABAergic synapses on ventral tegmental area dopamine neurons are targets for ethanol action. J Pharmacol Exp Ther 327:196–205

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Shao XM, Olive MF, Griffin WC 3rd, Li KY, Krnjevic K, Zhou C, Ye JH (2009) Ethanol facilitates glutamatergic transmission to dopamine neurons in the ventral tegmental area. Neuropsychopharmacology 34:307–318

    Article  PubMed  CAS  Google Scholar 

  • Zhou FC, Zhang JK, Lumeng L, Li TK (1995) Mesolimbic dopamine system in alcohol-preferring rats. Alcohol 12:403–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the United Arab Emirates University (AB) and by grants from the Swiss National Science Foundation 3100-059350 and 3100AO-100686 (JLD).

Disclosure

The authors have no financial interests that might be perceived to influence the results or the discussion reported in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Bahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahi, A., Dreyer, JL. Involvement of nucleus accumbens dopamine D1 receptors in ethanol drinking, ethanol-induced conditioned place preference, and ethanol-induced psychomotor sensitization in mice. Psychopharmacology 222, 141–153 (2012). https://doi.org/10.1007/s00213-011-2630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2630-8

Keywords

Navigation