Skip to main content

Advertisement

Log in

HOE-140, an antagonist of B2 receptor, protects against memory deficits and brain damage induced by moderate lateral fluid percussion injury in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

There are evidences indicating the role of kinins in pathophysiology of traumatic brain injury, but little is known about their action on memory deficits.

Objectives

Our aim was to establish the role of bradykinin receptors B1 (B1R) and B2 (B2R) on the behavioral, biochemical, and histologic features elicited by moderate lateral fluid percussion injury (mLFPI) in mice.

Methods

The role of kinin B1 and B2 receptors in brain damage, neuromotor, and cognitive deficits induced by mLFPI, was evaluated by means of subcutaneous injection of B2R antagonist (HOE-140; 1 or 10 nmol/kg) or B1R antagonist (des-Arg9-[Leu8]-bradykinin (DAL-Bk; 1 or 10 nmol/kg) 30 min and 24 h after brain injury. Brain damage was evaluated in the cortex, being considered as lesion volume, inflammatory, and oxidative damage. The open field and elevated plus maze tests were performed to exclude the nonspecific effects on object recognition memory test.

Results

Our data revealed that HOE-140 (10 nmol/kg) protected against memory impairment. This treatment attenuated the brain edema, interleukin-1β, tumor necrosis factor-α, and nitric oxide metabolites content elicited by mLFPI. Accordingly, HOE-140 administration protected against the increase of nicotinamide adenine dinucleotide phosphate oxidase activity, thiobarbituric-acid-reactive species, protein carbonylation generation, and Na+ K+ ATPase inhibition induced by trauma. Histologic analysis showed that HOE-140 reduced lesion volume when analyzed 7 days after brain injury.

Conclusions

This study suggests the involvement of the B2 receptor in memory deficits and brain damage caused by mLFPI in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiguo W, Zhe Y, Gomez-Pinilla F (2010) Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil Neural Repair 24:290–298. doi:10.1177/1545968309348318

    Article  Google Scholar 

  • Albert-Weissenberger C, Stetter C, Meuth SG, Gobel K, Bader M, Siren AL, Kleinschnitz C (2012) Blocking of bradykinin receptor B1 protects from focal closed head injury in mice by reducing axonal damage and astroglia activation. J Cereb Blood Flow Metab 32:1747–1756. doi:10.1038/jcbfm.2012.62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ates O, Cayli S, Altinoz E, Gurses I, Yucel N, Sener M, Kocak A, Yologlu S (2007) Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem 294:137–144. doi:10.1007/s11010-006-9253-0

    Article  PubMed  CAS  Google Scholar 

  • Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, Stoll G, Renne T, Kleinschnitz C (2009) Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke 40:285–293. doi:10.1161/STROKEAHA.108.526673

    Article  PubMed  CAS  Google Scholar 

  • Ayer R, Jadhav V, Sugawara T, Zhang JH (2011) The neuroprotective effects of cyclooxygenase-2 inhibition in a mouse model of aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl 111:145–149. doi:10.1007/978-3-7091-0693-8_24

    Article  PubMed  CAS  Google Scholar 

  • Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, Greig NH, Pick CG (2011) Tumor necrosis factor-alpha synthesis inhibitor, 3,6′-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem 118:1032–1042. doi:10.1111/j.1471-4159.2011.07377.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bay E, Covassin T (2012) Chronic stress, somatic and depressive symptoms following mild to moderate traumatic brain injury. Arch Psychiatr Nurs 26:477–486. doi:10.1016/j.apnu.2012.06.002

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carbonell WS, Maris DO, McCall T, Grady MS (1998) Adaptation of the fluid percussion injury model to the mouse. J Neurotrauma 15:217–229

    Article  PubMed  CAS  Google Scholar 

  • Chao J, Woodley C, Chao L, Margolius HS (1983) Identification of tissue kallikrein in brain and in the cell-free translation product encoded by brain mRNA. J Biol Chem 258:15173–15178

    PubMed  CAS  Google Scholar 

  • Clausen F, Lundqvist H, Ekmark S, Lewen A, Ebendal T, Hillered L (2004) Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury. J Neurotrauma 21:1168–1182. doi:10.1089/neu.2004.21.1168

    Article  PubMed  Google Scholar 

  • Clausen F, Hanell A, Bjork M, Hillered L, Mir AK, Gram H, Marklund N (2009) Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 30:385–396. doi:10.1111/j.1460-9568.2009.06820.x

    Article  PubMed  Google Scholar 

  • Correa FM, Innis RB, Uhl GR, Snyder SH (1979) Bradykinin-like immunoreactive neuronal systems localized histochemically in rat brain. Proc Natl Acad Sci U S A 76:1489–1493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Donkin JJ, Vink R (2010) Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 23:293–299. doi:10.1097/WCO.0b013e328337f451

    Article  PubMed  CAS  Google Scholar 

  • Gahm C, Holmin S, Wiklund PN, Brundin L, Mathiesen T (2006) Neuroprotection by selective inhibition of inducible nitric oxide synthase after experimental brain contusion. J Neurotrauma 23:1343–1354. doi:10.1089/neu.2006.23.1343

    Article  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271–284

    Article  PubMed  CAS  Google Scholar 

  • Gorlach C, Hortobagyi T, Hortobagyi S, Benyo Z, Relton J, Whalley ET, Wahl M (2001) Bradykinin B2, but not B1, receptor antagonism has a neuroprotective effect after brain injury. J Neurotrauma 18:833–838. doi:10.1089/089771501316919193

    Article  PubMed  CAS  Google Scholar 

  • Groger M, Lebesgue D, Pruneau D, Relton J, Kim SW, Nussberger J, Plesnila N (2005) Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:978–989. doi:10.1038/sj.jcbfm.9600096

    Article  PubMed  CAS  Google Scholar 

  • Hall JM (1992) Bradykinin receptors: pharmacological properties and biological roles. Pharmacol Ther 56:131–190

    Article  PubMed  CAS  Google Scholar 

  • Hellal F, Pruneau D, Palmier B, Faye P, Croci N, Plotkine M, Marchand-Verrecchia C (2003) Detrimental role of bradykinin B2 receptor in a murine model of diffuse brain injury. J Neurotrauma 20:841–851. doi:10.1089/089771503322385773

    Article  PubMed  CAS  Google Scholar 

  • Hsieh HL, Wang HH, Wu CY, Yang CM (2010) Reactive oxygen species-dependent c-Fos/activator protein 1 induction upregulates heme oxygenase-1 expression by bradykinin in brain astrocytes. Antioxid Redox Signal 13:1829–1844. doi:10.1089/ars.2009.2957

    Article  PubMed  CAS  Google Scholar 

  • Ivashkova Y, Svetnitsky A, Mayzler O, Pruneau D, Benifla M, Fuxman Y, Cohen A, Artru AA, Shapira Y (2006) Bradykinin B2 receptor antagonism with LF 18-1505T reduces brain edema and improves neurological outcome after closed head trauma in rats. J Trauma 61:879–885. doi:10.1097/01.ta.0000234722.98537.01

    Article  PubMed  CAS  Google Scholar 

  • Jamme I, Petit E, Divoux D, Gerbi A, Maixent JM, Nouvelot A (1995) Modulation of mouse cerebral Na+, K(+)-ATPase activity by oxygen free radicals. Neuroreport 7:333–337

    PubMed  CAS  Google Scholar 

  • Kaplanski J, Pruneau D, Asa I, Artru AA, Azez A, Ivashkova Y, Rudich Z, Shapira Y (2002) LF 16-0687 Ms, a bradykinin B2 receptor antagonist, reduces brain edema and improves long-term neurological function recovery after closed head trauma in rats. J Neurotrauma 19:953–964. doi:10.1089/089771502320317104

    Article  PubMed  Google Scholar 

  • Kaplanski J, Asa I, Artru AA, Azez A, Ivashkova Y, Rudich Z, Pruneau D, Shapira Y (2003) LF 16-0687 Ms, a new bradykinin B2 receptor antagonist, decreases ex vivo brain tissue prostaglandin E2 synthesis after closed head trauma in rats. Resuscitation 56:207–213

    Article  PubMed  CAS  Google Scholar 

  • Klasner B, Lumenta DB, Pruneau D, Zausinger S, Plesnila N (2006) Therapeutic window of bradykinin B2 receptor inhibition after focal cerebral ischemia in rats. Neurochem Int 49:442–447. doi:10.1016/j.neuint.2006.02.010

    Article  PubMed  CAS  Google Scholar 

  • Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. J Vis Exp. doi:10.3791/1088

    PubMed Central  PubMed  Google Scholar 

  • Lee YJ, Zachrisson O, Tonge DA, McNaughton PA (2002) Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons. Mol Cell Neurosci 19:186–200. doi:10.1006/mcne.2001.1073

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lima FD, Souza MA, Furian AF, Rambo LM, Ribeiro LR, Martignoni FV, Hoffmann MS, Fighera MR, Royes LF, Oliveira MS, de Mello CF (2008) Na+, K+-ATPase activity impairment after experimental traumatic brain injury: relationship to spatial learning deficits and oxidative stress. Behav Brain Res 193:306–310. doi:10.1016/j.bbr.2008.05.013

    Article  PubMed  CAS  Google Scholar 

  • Lima FD, Oliveira MS, Furian AF, Souza MA, Rambo LM, Ribeiro LR, Silva LF, Retamoso LT, Hoffmann MS, Magni DV, Pereira L, Fighera MR, Mello CF, Royes LF (2009) Adaptation to oxidative challenge induced by chronic physical exercise prevents Na+, K+-ATPase activity inhibition after traumatic brain injury. Brain Res 1279:147–155. doi:10.1016/j.brainres.2009.04.052

    Article  PubMed  CAS  Google Scholar 

  • Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Chen JC, Yang CM (2012) NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Cell Commun Signal 10:35. doi:10.1186/1478-811X-10-35

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu HT, Akita T, Shimizu T, Sabirov RZ, Okada Y (2009) Bradykinin-induced astrocyte-neuron signalling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J Physiol 587:2197–2209. doi:10.1113/jphysiol.2008.165084

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lu J, Moochhala S, Shirhan M, Ng KC, Teo AL, Tan MH, Moore XL, Wong MC, Ling EA (2003) Neuroprotection by aminoguanidine after lateral fluid-percussive brain injury in rats: a combined magnetic resonance imaging, histopathologic and functional study. Neuropharmacology 44:253–263

    Article  PubMed  CAS  Google Scholar 

  • Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3:845–852. doi:10.1038/nrd1522

    Article  PubMed  CAS  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71. doi:10.1006/niox.2000.0319

    Article  PubMed  CAS  Google Scholar 

  • Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A (2005) The kallikrein–kinin system: current and future pharmacological targets. J Pharmacol Sci 99:6–38

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, Wada K (2003) Expression and function of bradykinin receptors in microglia. Life Sci 72:1573–1581

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T, Ifuku M, Kosai Y, Wang B, Nolte C, Aoki S, Kettenmann H, Wada K (2007) Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem 101:397–410. doi:10.1111/j.1471-4159.2006.04339.x

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Plesnila N, Schulz J, Stoffel M, Eriskat J, Pruneau D, Baethmann A (2001) Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J Neurotrauma 18:1049–1058. doi:10.1089/08977150152693746

    Article  PubMed  CAS  Google Scholar 

  • Potts MB, Koh SE, Whetstone WD, Walker BA, Yoneyama T, Claus CP, Manvelyan HM, Noble-Haeusslein LJ (2006) Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx 3:143–153. doi:10.1016/j.nurx.2006.01.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348-364. doi:10.1080/10715760902751902

    Google Scholar 

  • Raghupathi R, Fernandez SC, Murai H, Trusko SP, Scott RW, Nishioka WK, McIntosh TK (1998) BCL-2 overexpression attenuates cortical cell loss after traumatic brain injury in transgenic mice. J Cereb Blood Flow Metab 18:1259–1269. doi:10.1097/00004647-199811000-00013

    Article  PubMed  CAS  Google Scholar 

  • Raidoo DM, Bhoola KD (1998) Pathophysiology of the kallikrein–kinin system in mammalian nervous tissue. Pharmacol Ther 79:105–127

    Article  PubMed  CAS  Google Scholar 

  • Raslan F, Schwarz T, Meuth SG, Austinat M, Bader M, Renne T, Roosen K, Stoll G, Siren AL, Kleinschnitz C (2010) Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood–brain barrier leakage and inflammation. J Cereb Blood Flow Metab 30:1477–1486. doi:10.1038/jcbfm.2010.28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schneider Oliveira M, Flavia Furian A, Freire Royes LF, Rechia Fighera M, de Carvalho Myskiw J, Gindri Fiorenza N, Mello CF (2004) Ascorbate modulates pentylenetetrazol-induced convulsions biphasically. Neuroscience 128:721–728. doi:10.1016/j.neuroscience.2004.07.012

    Article  PubMed  CAS  Google Scholar 

  • Silva LF, Hoffmann MS, Rambo LM, Ribeiro LR, Lima FD, Furian AF, Oliveira MS, Fighera MR, Royes LF (2011) The involvement of Na+, K+-ATPase activity and free radical generation in the susceptibility to pentylenetetrazol-induced seizures after experimental traumatic brain injury. J Neurol Sci 308:35–40. doi:10.1016/j.jns.2011.06.030

    Article  PubMed  CAS  Google Scholar 

  • Silva LF, Hoffmann MS, Gerbatin R, Fiorin F, Dobrachinski F, Mota BC, Wouters AT, Soares FA, Pavarini SP, Fighera MR, Royes LF (2013) Treadmill exercise protects against pentylenetetrazol-induced seizures and oxidative stress after traumatic brain injury. J Neurotrauma. doi:10.1089/neu.2012.2577

    PubMed  Google Scholar 

  • Singleton RH, Yan HQ, Fellows-Mayle W, Dixon CE (2010) Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J Neurotrauma 27:1091–1099. doi:10.1089/neu.2010.1291

    Article  PubMed Central  PubMed  Google Scholar 

  • Sosin DM, Sniezek JE, Waxweiler RJ (1995) Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. JAMA 273:1778–1780

    Article  PubMed  CAS  Google Scholar 

  • Souza MA, Oliveira MS, Furian AF, Rambo LM, Ribeiro LR, Lima FD, Dalla Corte LC, Silva LF, Retamoso LT, Dalla Corte CL, Puntel GO, de Avila DS, Soares FA, Fighera MR, de Mello CF, Royes LF (2009) Swimming training prevents pentylenetetrazol-induced inhibition of Na+, K+-ATPase activity, seizures, and oxidative stress. Epilepsia 50:811–823. doi:10.1111/j.1528-1167.2008.01908.x

    Article  PubMed  CAS  Google Scholar 

  • Stokely ME, Orr EL (2008) Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. J Neurotrauma 25:52–61. doi:10.1089/neu.2007.0397

    Article  PubMed  Google Scholar 

  • Stover JF, Dohse NK, Unterberg AW (2000) Significant reduction in brain swelling by administration of nonpeptide kinin B2 receptor antagonist LF 16-0687Ms after controlled cortical impact injury in rats. J Neurosurg 92:853–859. doi:10.3171/jns.2000.92.5.0853

    Article  PubMed  CAS  Google Scholar 

  • Su J, Cui M, Tang Y, Zhou H, Liu L, Dong Q (2009) Blockade of bradykinin B2 receptor more effectively reduces postischemic blood-brain barrier disruption and cytokines release than B1 receptor inhibition. Biochem Biophys Res Commun 388:205–211. doi:10.1016/j.bbrc.2009.07.135

    Google Scholar 

  • Thannickal VJ, Fanburg BL (1995) Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 270:30334–30338

    Article  PubMed  CAS  Google Scholar 

  • Theodoros DG, Shrapnel N, Murdoch BE (1998) Motor speech impairment following traumatic brain injury in childhood: a physiological and perceptual analysis of one case. Pediatr Rehabil 2:107–122

    PubMed  CAS  Google Scholar 

  • Trabold R, Eros C, Zweckberger K, Relton J, Beck H, Nussberger J, Muller-Esterl W, Bader M, Whalley E, Plesnila N (2010) The role of bradykinin B(1) and B(2) receptors for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 30:130–139. doi:10.1038/jcbfm.2009.196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:1021–1029. doi:10.1016/j.neuroscience.2004.06.046

    Article  PubMed  CAS  Google Scholar 

  • Wada K, Chatzipanteli K, Busto R, Dietrich WD (1998a) Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg 89:807–818. doi:10.3171/jns.1998.89.5.0807

    Article  PubMed  CAS  Google Scholar 

  • Wada K, Chatzipanteli K, Kraydieh S, Busto R, Dietrich WD (1998b) Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery 43:1427–1436

    PubMed  CAS  Google Scholar 

  • Wada K, Chatzipanteli K, Busto R, Dietrich WD (1999) Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. J Neurotrauma 16:203–212

    Article  PubMed  CAS  Google Scholar 

  • Walker K, Perkins M, Dray A (1995) Kinins and kinin receptors in the nervous system. Neurochem Int 26:1–16; discussion 17–26

    Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9. doi:10.1093/bja/aem131

    Article  PubMed  CAS  Google Scholar 

  • Writer BW, Schillerstrom JE (2009) Psychopharmacological treatment for cognitive impairment in survivors of traumatic brain injury: a critical review. J Neuropsychiatry Clin Neurosci 21:362–370. doi:10.1176/appi.neuropsych.21.4.362

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Traber MG, Packer L (1995) Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem 228:349–351. doi:10.1006/abio.1995.1362

    Article  PubMed  CAS  Google Scholar 

  • Yang CM, Hsieh HL, Lin CC, Shih RH, Chi PL, Cheng SE, Hsiao LD (2013) Multiple factors from bradykinin-challenged astrocytes contribute to the neuronal apoptosis: involvement of astroglial ROS, MMP-9, and HO-1/CO system. Mol Neurobiol 47:1020–1033. doi:10.1007/s12035-013-8402-1

    Article  PubMed  CAS  Google Scholar 

  • Zhan H, Tada T, Nakazato F, Tanaka Y, Hongo K (2004) Spatial learning transiently disturbed by intraventricular administration of ouabain. Neurol Res 26:35–40. doi:10.1179/016164104773026507

    Article  PubMed  Google Scholar 

  • Ziebell JM, Bye N, Semple BD, Kossmann T, Morganti-Kossmann MC (2011) Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res 1414:94–105. doi:10.1016/j.brainres.2011.07.056

    Article  PubMed  CAS  Google Scholar 

  • Zink BJ (2001) Traumatic brain injury outcome: concepts for emergency care. Ann Emerg Med 37:318–332. doi:10.1067/mem.2001.113505

    Article  PubMed  CAS  Google Scholar 

  • Zweckberger K, Eros C, Zimmermann R, Kim SW, Engel D, Plesnila N (2006) Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma 23:1083–1093. doi:10.1089/neu.2006.23.1083

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The presente study was supported by Conselho Nacional de Desenvolvimento Científico (CNPq) and by Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES; Brazil). Ferreira J is the recipient of CNPq fellowships, grant numbers 301552/2007-0. Royes L.F.F is recipient of CNPq/FAPERGS fellowships, grant numbers 11/2082-4. The funding sources had no involvement in study design, in the collection, analysis, interpretation of data, and in the writing of the report. We also attest that all the experimentswere performed in compliance with Brazilian (law no. 6638 of 1979—Standards for the Practice Teaching-scientific Animal use) law currently in force, and that experiments were previously approved by the Committee on the Use and Care of Laboratory Animals of the Federal University of the Santa Maria (process number: 113/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando Freire Royes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, A.P.O., Rodrigues, F.S., Della-Pace, I.D. et al. HOE-140, an antagonist of B2 receptor, protects against memory deficits and brain damage induced by moderate lateral fluid percussion injury in mice. Psychopharmacology 231, 1935–1948 (2014). https://doi.org/10.1007/s00213-013-3336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3336-x

Keywords

Navigation