Skip to main content
Log in

Phosphorylation of GABAA receptors influences receptor trafficking and neurosteroid actions

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Gamma-aminobutyric acid type A receptors (GABAARs) are the principal mediators of inhibitory transmission in the mammalian central nervous system. GABAARs can be localized at post-synaptic inhibitory specializations or at extrasynaptic sites. While synaptic GABAARs are activated transiently following the release of GABA from presynaptic vesicles, extrasynaptic GABAARs are typically activated continuously by ambient GABA concentrations and thus mediate tonic inhibition. The tonic inhibitory currents mediated by extrasynaptic GABAARs control neuronal excitability and the strength of synaptic transmission. However, the mechanisms by which neurons control the functional properties of extrasynaptic GABAARs had not yet been explored.

Objectives

We review GABAARs, how they are assembled and trafficked, and the role phosphorylation has on receptor insertion and membrane stabilization. Finally, we review the modulation of GABAARs by neurosteroids and how GABAAR phosphorylation can influence the actions of neurosteroids.

Conclusions

Trafficking and stability of functional channels to the membrane surface are critical for inhibitory efficacy. Phosphorylation of residues within GABAAR subunits plays an essential role in the assembly, trafficking, and cell surface stability of GABAARs. Neurosteroids are produced in the brain and are highly efficacious allosteric modulators of GABAAR-mediated current. This allosteric modulation by neurosteroids is influenced by the phosphorylated state of the GABAAR which is subunit dependent, adding temporal and regional variability to the neurosteroid response. Possible links between neurosteroid actions, phosphorylation, and GABAAR trafficking remain to be explored, but potential novel therapeutic targets may exist for numerous neurological and psychological disorders which are linked to fluctuations in neurosteroid levels and GABAA subunit expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AP2:

Clathin adaptor protein 2

BIG2:

Brefeldin A-inhibited GDP/GTP exchange factor 2

CAML:

Calcium-modulating cyclophilin ligand

ER:

Endoplasmic reticulum

GABA:

γ-aminobutyric acid

GABAARs:

γ-aminobutyric acid type A receptors

GABARAP:

GABAAR-associated proteinA

GODZ:

Golgi-specific DHHC zinc finger protein

HAP1:

Huntingtin-associated protein 1

PKC:

Protein kinase C

THDOC:

Allotetrahydrodeoxycorticosterone

THIP- 4,5,6,7:

Tetrahydroisoxazolo[5,4-c]pyridin-3-ol

References

  • Abramian AM, Comenencia-Ortiz E, Vithlani M, Tretter EV, Sieghart W, Davies PA, Moss SJ (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J Biol Chem 285:41795–41805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abramian AM, Comenencia-Ortiz E, Modgil A, Vien TN, Nakamura Y, Moore YE, Maguire JL, Terunuma M, Davies PA, Moss SJ (2014) Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America

  • Ade KK, Janssen MJ, Ortinski PI, Vicini S (2008) Differential tonic GABA conductances in striatal medium spiny neurons. J Neurosci Off J Soc Neurosci 28:1185–1197

    CAS  Google Scholar 

  • Agis-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 103:14602–14607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Angelotti TP, Macdonald RL (1993) Assembly of GABAA receptor subunits: alpha 1 beta 1 and alpha 1 beta 1 gamma 2S subunits produce unique ion channels with dissimilar single-channel properties. J Neurosci Off J Soc Neurosci 13:1429–1440

    CAS  Google Scholar 

  • Arancibia-Carcamo IL, Kittler JT (2009) Regulation of GABA(A) receptor membrane trafficking and synaptic localization. Pharmacol Ther 123:17–31

    CAS  PubMed  Google Scholar 

  • Arancibia-Carcamo IL, Yuen EY, Muir J, Lumb MJ, Michels G, Saliba RS, Smart TG, Yan Z, Kittler JT, Moss SJ (2009) Ubiquitin-dependent lysosomal targeting of GABA(A) receptors regulates neuronal inhibition. Proc Natl Acad Sci U S A 106:17552–17557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Backus KH, Arigoni M, Drescher U, Scheurer L, Malherbe P, Mohler H, Benson JA (1993) Stoichiometry of a recombinant GABAA receptor deduced from mutation-induced rectification. Neuroreport 5:285–288

    CAS  PubMed  Google Scholar 

  • Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA (2001) Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol Pharmacol 59:814–824

    CAS  PubMed  Google Scholar 

  • Barrera NP, Betts J, You H, Henderson RM, Martin IL, Dunn SM, Edwardson JM (2008) Atomic force microscopy reveals the stoichiometry and subunit arrangement of the alpha4beta3delta GABA(A) receptor. Mol Pharmacol 73:960–967

    CAS  PubMed  Google Scholar 

  • Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG, Moss SJ (2001) GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci 4:908–916

    CAS  PubMed  Google Scholar 

  • Belelli D, Herd MB (2003) The contraceptive agent Provera enhances GABA(A) receptor-mediated inhibitory neurotransmission in the rat hippocampus: evidence for endogenous neurosteroids? J Neurosci Off J Soc Neurosci 23:10013–10020

    CAS  Google Scholar 

  • Belelli D, Casula A, Ling A, Lambert JJ (2002) The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors. Neuropharmacology 43:651–661

    CAS  PubMed  Google Scholar 

  • Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ (2005) Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci Off J Soc Neurosci 25:11513–11520

    CAS  Google Scholar 

  • Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci Off J Soc Neurosci 29:12757–12763

    CAS  Google Scholar 

  • Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2013) Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res 103:2–30

    PubMed  Google Scholar 

  • Bianchi MT, Macdonald RL (2003) Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci Off J Soc Neurosci 23:10934–10943

    CAS  Google Scholar 

  • Boehm SL 2nd, Peden L, Harris RA, Blednov YA (2004) Deletion of the fyn-kinase gene alters sensitivity to GABAergic drugs: dependence on beta2/beta3 GABAA receptor subunits. J Pharmacol Exp Ther 309:1154–1159

    CAS  PubMed  Google Scholar 

  • Bogdanov Y, Michels G, Armstrong-Gold C, Haydon PG, Lindstrom J, Pangalos M, Moss SJ (2006) Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. EMBO Journal 25:4381–4389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandon NJ, Delmas P, Kittler JT, McDonald BJ, Sieghart W, Brown DA, Smart TG, Moss SJ (2000) GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J Biol Chem 275:38856–38862

    CAS  PubMed  Google Scholar 

  • Brandon NJ, Jovanovic JN, Smart TG, Moss SJ (2002) Receptor for activated C kinase-1 facilitates protein kinase C-dependent phosphorylation and functional modulation of GABA(A) receptors with the activation of G-protein-coupled receptors. J Neurosci Off J Soc Neurosci 22:6353–6361

    CAS  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497(Pt 3):753–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol 136:965–974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callachan H, Cottrell GA, Hather NY, Lambert JJ, Nooney JM, Peters JA (1987) Modulation of the GABAA receptor by progesterone metabolites. Proc R Soc Lond Ser B Containing Papers Biol Character R Soc 231:359–369

    CAS  Google Scholar 

  • Chandra D, Jia F, Liang J, Peng Z, Suryanarayanan A, Werner DF, Spigelman I, Houser CR, Olsen RW, Harrison NL, Homanics GE (2006) GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci U S A 103:15230–15235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charych EI, Yu W, Miralles CP, Serwanski DR, Li X, Rubio M, De Blas AL (2004) The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the beta subunits of the GABA receptors. J Neurochem 90:173–189

    CAS  PubMed  Google Scholar 

  • Cheng VY, Bonin RP, Chiu MW, Newell JG, MacDonald JF, Orser BA (2006) Gabapentin increases a tonic inhibitory conductance in hippocampal pyramidal neurons. Anesthesiology 105:325–333

    CAS  PubMed  Google Scholar 

  • Compagnone NA, Mellon SH (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21:1–56

    CAS  PubMed  Google Scholar 

  • Connolly CN, Wafford KA (2004) The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 32:529–534

    CAS  PubMed  Google Scholar 

  • Connolly CN, Wooltorton JR, Smart TG, Moss SJ (1996) Subcellular localization of gamma-aminobutyric acid type A receptors is determined by receptor beta subunits. Proc Natl Acad Sci U S A 93:9899–9904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Connolly CN, Uren JM, Thomas P, Gorrie GH, Gibson A, Smart TG, Moss SJ (1999) Subcellular localization and endocytosis of homomeric gamma2 subunit splice variants of gamma-aminobutyric acid type A receptors. Mol Cell Neurosci 13:259–271

    CAS  PubMed  Google Scholar 

  • Cope DW, Hughes SW, Crunelli V (2005) GABAA receptor-mediated tonic inhibition in thalamic neurons. J Neurosci Off J Soc Neurosci 25:11553–11563

    CAS  Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    CAS  PubMed  Google Scholar 

  • Cronin JN, Bradbury EJ, Lidierth M (2004) Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity. Pain 112:156–163

    CAS  PubMed  Google Scholar 

  • Darlison MG, Pahal I, Thode C (2005) Consequences of the evolution of the GABA(A) receptor gene family. Cell Mol Neurobiol 25:607–624

    CAS  PubMed  Google Scholar 

  • Davies PA, Kirkness EF, Hales TG (1997) Modulation by general anaesthetics of rat GABAA receptors comprised of alpha 1 beta 3 and beta 3 subunits expressed in human embryonic kidney 293 cells. Br J Pharmacol 120:899–909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drasbek KR, Jensen K (2006) THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex 16:1134–1141

    PubMed  Google Scholar 

  • Drasbek KR, Hoestgaard-Jensen K, Jensen K (2007) Modulation of extrasynaptic THIP conductances by GABAA-receptor modulators in mouse neocortex. J Neurophysiol 97:2293–2300

    CAS  PubMed  Google Scholar 

  • Ehya N, Sarto I, Wabnegger L, Sieghart W (2003) Identification of an amino acid sequence within GABA(A) receptor beta3 subunits that is important for receptor assembly. J Neurochem 84:127–135

    CAS  PubMed  Google Scholar 

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    CAS  PubMed  Google Scholar 

  • Fancsik A, Linn DM, Tasker JG (2000) Neurosteroid modulation of GABA IPSCs is phosphorylation dependent. J Neurosci 20:3067–3075

    CAS  PubMed  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    CAS  PubMed  Google Scholar 

  • Farrar SJ, Whiting PJ, Bonnert TP, McKernan RM (1999) Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J Biol Chem 274:10100–10104

    CAS  PubMed  Google Scholar 

  • Feng Y, Kapornai K, Kiss E, Tamas Z, Mayer L, Baji I, Daroczi G, Benak I, Kothencne VO, Dombovari E, Kaczvinszk E, Besnyo M, Gadoros J, Szekely J, Kovacs M, Vetro A, Kennedy JL, Barr CL (2010) Association of the GABRD gene and childhood-onset mood disorders. Genes Brain Behav 9:668–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fritschy JM, Harvey RJ, Schwarz G (2008) Gephyrin: where do we stand, where do we go? Trends Neurosci 31:257–264

    CAS  PubMed  Google Scholar 

  • Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez C, Moss SJ, Olsen RW (2012) Ethanol promotes clathrin adaptor-mediated endocytosis via the intracellular domain of delta-containing GABAA receptors. J Neurosci Off J Soc Neurosci 32:17874–17881

    CAS  Google Scholar 

  • Gorrie GH, Vallis Y, Stephenson A, Whitfield J, Browning B, Smart TG, Moss SJ (1997) Assembly of GABAA receptors composed of alpha1 and beta2 subunits in both cultured neurons and fibroblasts. J Neurosci Off J Soc Neurosci 17:6587–6596

    CAS  Google Scholar 

  • Goto H, Terunuma M, Kanematsu T, Misumi Y, Moss SJ, Hirata M (2005) Direct interaction of N-ethylmaleimide-sensitive factor with GABA(A) receptor beta subunits. Mol Cell Neurosci 30:197–206

    CAS  PubMed  Google Scholar 

  • Gulinello M, Gong QH, Li X, Smith SS (2001) Short-term exposure to a neuroactive steroid increases alpha4 GABA(A) receptor subunit levels in association with increased anxiety in the female rat. Brain Res 910:55–66

    CAS  PubMed  Google Scholar 

  • Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33:625–633

    CAS  PubMed  Google Scholar 

  • Harney SC, Frenguelli BG, Lambert JJ (2003) Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurones. Neuropharmacology 45:873–883

    CAS  PubMed  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    CAS  PubMed  Google Scholar 

  • Hosie AM, Wilkins ME, Smart TG (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 116:7–19

    CAS  PubMed  Google Scholar 

  • Hosie AM, Clarke L, da Silva H, Smart TG (2009) Conserved site for neurosteroid modulation of GABA A receptors. Neuropharmacology 56:149–154

    CAS  PubMed  Google Scholar 

  • Hsu FC, Waldeck R, Faber DS, Smith SS (2003) Neurosteroid effects on GABAergic synaptic plasticity in hippocampus. J Neurophysiol 89:1929–1940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob TC, Moss SJ, Jurd R (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9:331–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, Ramanantsoa N, Gallego J, Ronnenberg A, Winter D, Frahm J, Fischer J, Bourgeron T, Ehrenreich H, Brose N (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci U S A 105:1710–1715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joyce CJ (2007) In silico comparative genomic analysis of GABAA receptor transcriptional regulation. BMC Genomics 8:203

    PubMed Central  PubMed  Google Scholar 

  • Jurd R, Tretter V, Walker J, Brandon NJ, Moss SJ (2010) Fyn kinase contributes to tyrosine phosphorylation of the GABA(A) receptor gamma2 subunit. Mol Cell Neurosci 44:129–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato T, Kakiuchi C, Iwamoto K (2007) Comprehensive gene expression analysis in bipolar disorder. Can J Psychiatry 52:763–771

    PubMed  Google Scholar 

  • Kia A, Ribeiro F, Nelson R, Gavrilovici C, Ferguson SS, Poulter MO (2011) Kindling alters neurosteroid-induced modulation of phasic and tonic GABAA receptor-mediated currents: role of phosphorylation. J Neurochem 116:1043–1056

    CAS  PubMed  Google Scholar 

  • Kirsch J, Kuhse J, Betz H (1995) Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol Cell Neurosci 6:450–461

    CAS  PubMed  Google Scholar 

  • Kittler JT, Moss SJ (2003) Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr Opin Neurobiol 13:341–347

    CAS  PubMed  Google Scholar 

  • Kittler JT, Delmas P, Jovanovic JN, Brown DA, Smart TG, Moss SJ (2000) Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J Neurosci Off J Soc Neurosci 20:7972–7977

    CAS  Google Scholar 

  • Kittler JT, McAinsh K, Moss SJ (2002) Mechanisms of GABAA receptor assembly and trafficking: implications for the modulation of inhibitory neurotransmission. Mol Neurobiol 26:251–268

    CAS  PubMed  Google Scholar 

  • Kittler JT, Arancibia-Carcamo IL, Moss SJ (2004a) Association of GRIP1 with a GABA(A) receptor associated protein suggests a role for GRIP1 at inhibitory synapses. Biochem Pharmacol 68:1649–1654

    CAS  PubMed  Google Scholar 

  • Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, Moss SJ (2004b) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A 101:12736–12741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kittler JT, Chen G, Honing S, Bogdanov Y, McAinsh K, Arancibia-Carcamo IL, Jovanovic JN, Pangalos MN, Haucke V, Yan Z, Moss SJ (2005) Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. Proc Natl Acad Sci U S A 102:14871–14876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kittler JT, Chen G, Kukhtina V, Vahedi-Faridi A, Gu Z, Tretter V, Smith KR, McAinsh K, Arancibia-Carcamo IL, Saenger W, Haucke V, Yan Z, Moss SJ (2008) Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor gamma2 subunit. Proc Natl Acad Sci U S A 105:3616–3621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A 103:10058–10063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kretschmannova K, Hines RM, Revilla-Sanchez R, Terunuma M, Tretter V, Jurd R, Kelz MB, Moss SJ, Davies PA (2013) Enhanced tonic inhibition influences the hypnotic and amnestic actions of the intravenous anesthetics etomidate and propofol. J Neurosci Off J Soc Neurosci 33:7264–7273

    CAS  Google Scholar 

  • Krishek BJ, Moss SJ, Smart TG (1996) Homomeric beta 1 gamma-aminobutyric acid A receptor-ion channels: evaluation of pharmacological and physiological properties. Mol Pharmacol 49:494–504

    CAS  PubMed  Google Scholar 

  • Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    CAS  PubMed  Google Scholar 

  • Leidenheimer NJ, Chapell R (1997) Effects of PKC activation and receptor desensitization on neurosteroid modulation of GABA(A) receptors. Brain Res Mol Brain Res 52:173–181

    CAS  PubMed  Google Scholar 

  • Leil TA, Chen ZW, Chang CS, Olsen RW (2004) GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 24:11429–11438

    CAS  PubMed  Google Scholar 

  • Levi S, Logan SM, Tovar KR, Craig AM (2004) Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J Neurosci Off J Soc Neurosci 24:207–217

    CAS  Google Scholar 

  • Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem 268:2106–2112

    CAS  PubMed  Google Scholar 

  • Loebrich S, Bahring R, Katsuno T, Tsukita S, Kneussel M (2006) Activated radixin is essential for GABAA receptor alpha5 subunit anchoring at the actin cytoskeleton. EMBO J 25:987–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    CAS  PubMed  Google Scholar 

  • Luscher B, Keller CA (2004) Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 102:195–221

    CAS  PubMed  Google Scholar 

  • Luscher B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70:385–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macdonald RL, Kang JQ, Gallagher MJ (2010) Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol 588:1861–1869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire J, Mody I (2007) Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. J Neurosci Off J Soc Neurosci 27:2155–2162

    CAS  Google Scholar 

  • Maguire J, Mody I (2008) GABA(A)R plasticity during pregnancy: relevance to postpartum depression. Neuron 59:207–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire J, Mody I (2009) Steroid hormone fluctuations and GABA(A)R plasticity. Psychoneuroendocrinology 34(Suppl 1):S84–S90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    CAS  PubMed  Google Scholar 

  • Majewska MD (1992) Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 38:379–395

    CAS  PubMed  Google Scholar 

  • Maldonado-Aviles JG, Curley AA, Hashimoto T, Morrow AL, Ramsey AJ, O'Donnell P, Volk DW, Lewis DA (2009) Altered markers of tonic inhibition in the dorsolateral prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 166:450–459

    PubMed Central  PubMed  Google Scholar 

  • Mammoto A, Sasaki T, Asakura T, Hotta I, Imamura H, Takahashi K, Matsuura Y, Shirao T, Takai Y (1998) Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun 243:86–89

    CAS  PubMed  Google Scholar 

  • Manent JB, Demarque M, Jorquera I, Pellegrino C, Ben-Ari Y, Aniksztejn L, Represa A (2005) A noncanonical release of GABA and glutamate modulates neuronal migration. J Neurosci Off J Soc Neurosci 25:4755–4765

    CAS  Google Scholar 

  • McDonald BJ, Moss SJ (1994) Differential phosphorylation of intracellular domains of gamma-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase. J Biol Chem 269:18111–18117

    CAS  PubMed  Google Scholar 

  • McDonald BJ, Amato A, Connolly CN, Benke D, Moss SJ, Smart TG (1998) Adjacent phosphorylation sites on GABAA receptor beta subunits determine regulation by cAMP-dependent protein kinase. Nat Neurosci 1:23–28

    CAS  PubMed  Google Scholar 

  • Mellon SH, Vaudry H (2001) Biosynthesis of neurosteroids and regulation of their synthesis. Int Rev Neurobiol 46:33–78

    CAS  PubMed  Google Scholar 

  • Minelli A, Brecha NC, Karschin C, DeBiasi S, Conti F (1995) GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 15:7734–7746

    CAS  PubMed  Google Scholar 

  • Mitchell SJ, Silver RA (2003) Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38:433–445

    CAS  PubMed  Google Scholar 

  • Mizokami A, Kanematsu T, Ishibashi H, Yamaguchi T, Tanida I, Takenaka K, Nakayama KI, Fukami K, Takenawa T, Kominami E, Moss SJ, Yamamoto T, Nabekura J, Hirata M (2007) Phospholipase C-related inactive protein is involved in trafficking of gamma2 subunit-containing GABA(A) receptors to the cell surface. J Neurosci Off J Soc Neurosci 27:1692–1701

    CAS  Google Scholar 

  • Mortensen M, Smart TG (2006) Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol 577:841–856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250

    CAS  PubMed  Google Scholar 

  • Mukherjee J, Kretschmannova K, Gouzer G, Maric HM, Ramsden S, Tretter V, Harvey K, Davies PA, Triller A, Schindelin H, Moss SJ (2011) The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor alpha1 subunit to gephyrin. J Neurosci Off J Soc Neurosci 31:14677–14687

    CAS  Google Scholar 

  • Nie H, Rewal M, Gill TM, Ron D, Janak PH (2011) Extrasynaptic delta-containing GABAA receptors in the nucleus accumbens dorsomedial shell contribute to alcohol intake. Proc Natl Acad Sci U S A 108:4459–4464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624–2628

    CAS  PubMed  Google Scholar 

  • Olah S, Fule M, Komlosi G, Varga C, Baldi R, Barzo P, Tamas G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panzanelli P, Gunn BG, Schlatter MC, Benke D, Tyagarajan SK, Scheiffele P, Belelli D, Lambert JJ, Rudolph U, Fritschy JM (2011) Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells. J Physiol 589:4959–4980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel B, Mortensen M, Smart TG (2014) Stoichiometry of delta subunit containing GABAA receptors. Br J Pharmacol 171:985–994

    CAS  PubMed  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    CAS  PubMed  Google Scholar 

  • Pavlov I, Savtchenko LP, Kullmann DM, Semyanov A, Walker MC (2009) Outwardly rectifying tonically active GABAA receptors in pyramidal cells modulate neuronal offset, not gain. J Neurosci Off J Soc Neurosci 29:15341–15350

    CAS  Google Scholar 

  • Peters JA, Kirkness EF, Callachan H, Lambert JJ, Turner AJ (1988) Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids. Br J Pharmacol 94:1257–1269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rathenberg J, Kittler JT, Moss SJ (2004) Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol Cell Neurosci 26:251–257

    CAS  PubMed  Google Scholar 

  • Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 562:27–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol 548:97–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudolph U, Möhler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6:18–23

    CAS  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Mohler H (2001) GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194

    CAS  PubMed  Google Scholar 

  • Russek SJ (1999) Evolution of GABA(A) receptor diversity in the human genome. Gene 227:213–222

    CAS  PubMed  Google Scholar 

  • Salin PA, Prince DA (1996) Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol 75:1573–1588

    CAS  PubMed  Google Scholar 

  • Sanna E, Garau F, Harris RA (1995) Novel properties of homomeric beta 1 gamma-aminobutyric acid type A receptors: actions of the anesthetics propofol and pentobarbital. Mol Pharmacol 47:213–217

    CAS  PubMed  Google Scholar 

  • Santhakumar V, Jones RT, Mody I (2010) Developmental regulation and neuroprotective effects of striatal tonic GABAA currents. Neuroscience 167:644–655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci Off J Soc Neurosci 31:18198–18210

    CAS  Google Scholar 

  • Sarto-Jackson I, Ramerstorfer J, Ernst M, Sieghart W (2006) Identification of amino acid residues important for assembly of GABA receptor alpha1 and gamma2 subunits. J Neurochem 96:983–995

    CAS  PubMed  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6:484–490

    CAS  PubMed  Google Scholar 

  • Sergeeva OA, Andreeva N, Garret M, Scherer A, Haas HL (2005) Pharmacological properties of GABAA receptors in rat hypothalamic neurons expressing the epsilon-subunit. J Neurosci Off J Soc Neurosci 25:88–95

    CAS  Google Scholar 

  • Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2:795–816

    CAS  PubMed  Google Scholar 

  • Smith SS, Gong QH, Li X, Moran MH, Bitran D, Frye CA, Hsu FC (1998) Withdrawal from 3alpha-OH-5alpha-pregnan-20-One using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in association with increased anxiety. J Neurosci Off J Soc Neurosci 18:5275–5284

    CAS  Google Scholar 

  • Smith KR, McAinsh K, Chen G, Arancibia-Carcamo IL, Haucke V, Yan Z, Moss SJ, Kittler JT (2008) Regulation of inhibitory synaptic transmission by a conserved atypical interaction of GABA(A) receptor beta- and gamma-subunits with the clathrin AP2 adaptor. Neuropharmacology 55:844–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stell BM, Mody I (2002) Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci Off J Soc Neurosci 22:RC223

    Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439–14444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor PM, Connolly CN, Kittler JT, Gorrie GH, Hosie A, Smart TG, Moss SJ (2000) Identification of residues within GABA(A) receptor alpha subunits that mediate specific assembly with receptor beta subunits. J Neurosci Off J Soc Neurosci 20:1297–1306

    CAS  Google Scholar 

  • Terunuma M, Jang IS, Ha SH, Kittler JT, Kanematsu T, Jovanovic JN, Nakayama KI, Akaike N, Ryu SH, Moss SJ, Hirata M (2004) GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci Off J Soc Neurosci 24:7074–7084

    CAS  Google Scholar 

  • Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL, MacAskill AF, Rostaing P, Lumb MJ, Humbert S, Triller A, Saudou F, Yan Z, Kittler JT (2010) Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65:53–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Twyman RE, Macdonald RL (1992) Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol 456:215–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    CAS  PubMed  Google Scholar 

  • Uji A, Matsuda M, Kukita T, Maeda K, Kanematsu T, Hirata M (2002) Molecules interacting with PRIP-2, a novel Ins(1,4,5)P3 binding protein type 2: Comparison with PRIP-1. Life Sci 72:443–453

    CAS  PubMed  Google Scholar 

  • Ullrich B, Ushkaryov YA, Sudhof TC (1995) Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14:497–507

    CAS  PubMed  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    CAS  PubMed  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117

    CAS  PubMed  Google Scholar 

  • Walters KJ, Kleijnen MF, Goh AM, Wagner G, Howley PM (2002) Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 41:1767–1777

    CAS  PubMed  Google Scholar 

  • Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW (1999) GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397:69–72

    CAS  PubMed  Google Scholar 

  • Wlodarczyk AI, Sylantyev S, Herd MB, Kersante F, Lambert JJ, Rusakov DA, Linthorst AC, Semyanov A, Belelli D, Pavlov I, Walker MC (2013) GABA-independent GABAA receptor openings maintain tonic currents. J Neurosci 33:3905–3914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wohlfarth KM, Bianchi MT, Macdonald RL (2002) Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit. J Neurosci Off J Soc Neurosci 22:1541–1549

    CAS  Google Scholar 

  • Yuan X, Yao J, Norris D, Tran DD, Bram RJ, Chen G, Luscher B (2008) Calcium-modulating cyclophilin ligand regulates membrane trafficking of postsynaptic GABA(A) receptors. Mol Cell Neurosci 38:277–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheleznova NN, Sedelnikova A, Weiss DS (2009) Function and modulation of delta-containing GABA(A) receptors. Psychoneuroendocrinology 34(Suppl 1):S67–S73

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Simons Foundation #206026 to S.J.M., NIH-NINDS grants, NS051195, NS056359, NS081735 (SJM), and NIH-NIMH grant, MH097446, (PAD & SJM). SJM serves as a consultant for SAGE therapeutics and AstraZeneca, relationships that are regulated by Tufts University and do not impact on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Davies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comenencia-Ortiz, E., Moss, S.J. & Davies, P.A. Phosphorylation of GABAA receptors influences receptor trafficking and neurosteroid actions. Psychopharmacology 231, 3453–3465 (2014). https://doi.org/10.1007/s00213-014-3617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3617-z

Keywords

Navigation