Skip to main content

Advertisement

Log in

The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts cognitive deficits induced by the D1/D2 dopaminergic receptor agonist apomorphine in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Schizophrenia is a devastating mental disease that affects nearly 1% of the population worldwide. It is well documented that the dopaminergic (DAergic) system is compromised in schizophrenia. It is of note that the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induces schizophrenia-like symptoms in rodents, including disruption of memory abilities. Neuroactive steroids, comprising dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS), were shown to affect brain DAergic system and to be involved in schizophrenia. BNN27 is a novel DHEA derivative, which is devoid of steroidogenic activity. It has recently been reported that BNN27 counteracted schizophrenia-like behavioural deficits produced by glutamate hypofunction in rats.

Objectives

The aim of the present study was to investigate the ability of BNN27 to attenuate non-spatial, spatial recognition and discrete memory deficits induced by apomorphine in rats.

Methods

To this end, the object recognition task (ORT), the object location task (OLT) and the step-through passive avoidance test (STPAT) were used.

Results

BNN27 (3 and 6 mg/kg, i.p.) attenuated apomorphine (0.5 mg/kg, i.p.)-induced non-spatial, spatial recognition and discrete memory deficits. Interestingly, the effects of compounds on memory cannot be ascribed to changes in locomotor activity.

Conclusions

Our findings suggest that BNN27 is effective to DA dysfunction caused by apomorphine, attenuating cognitive impairments induced by this D1/D2 receptor agonist in rats. Additionally, our findings illustrate a functional interaction between BNN27 and the DAergic system that may be of relevance for schizophrenia-like behavioural symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antoniou K, Kafetzopoulos (1991) A comparative study of the behavioral effects of d-amphetamine and apomorphine in the rat. Pharmacol Biochem Behav 39:61–70

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-Garcia LE, Rodriguez-Moreno A, Flores G (2018) Apomorphine effects on hippocampus. Neural Regen Res 13:2064–2066

    Article  PubMed  PubMed Central  Google Scholar 

  • Auclair A, Kleven MS, Besnard J, Depoortere R, Newman-Tancredi A (2006) Actions of novel antipsychotic agents on apomorphine-induced PPI disruption: influence of combined serotonin 5-HT1A receptor activation and dopamine D2 receptor blockade. Neuropsychopharmacology 31:1900–1909

    Article  CAS  PubMed  Google Scholar 

  • Bennett JP Jr, O’Brien LC, Brohawn DG (2016) Pharmacological properties of microneurotrophin drugs developed for the treatment of amyotrophic lateral sclerosis. Biochem Pharmacol 117:68–77

    Article  CAS  PubMed  Google Scholar 

  • Bitanihirwe BK, Woo TU (2011) Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 35:878–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blochl A, Sirrenberg C (1996) Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75NTR receptors. J Biol Chem 271:21100–21107

    Article  CAS  PubMed  Google Scholar 

  • Botsakis K, Mourtzi T, Panagiotakopoulou V, Vreka M, Stathopoulos GT, Pediaditakis I, Charalampopoulos I, Gravanis A, Delis F, Antoniou K, Zisimopoulos D, Georgiou CD, Panagopoulos NT, Matsokis N, Angelatou F (2017) BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the “weaver” mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology 121:140–157

    Article  CAS  PubMed  Google Scholar 

  • Boultadakis A, Pitsikas N (2010) Effects of the nitric oxide synthase inhibitor L-NAME on recognition and spatial memory deficits produced by different NMDA receptor antagonists in the rat. Neuropsychopharmacology 35:2357–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calev A, Venables PH, Monk AF (1983) Evidence for distinct verbal memory pathologies in severely and mildly disturbed schizophrenics. Schizophr Bull 9:247–264

  • Calogeropoulou T, Avlonitis N, Minas V, Alexi X, Pantzou A, Charalampopoulos I, Zervou M, Vergou V, Katsanou ES, Lazaridis I, Alexis MN, Gravanis A (2009) Novel dehydroepiandrosterone derivatives with antiapopototic activity. J Med Chem 52:6569–6587

    Article  CAS  PubMed  Google Scholar 

  • Cavoy A, Delacour J (1993) Spatial but not object recognition is impaired by aging in rats. Physiol Behav 53:527–530

    Article  CAS  PubMed  Google Scholar 

  • Charalampopoulos I, Tsatsanis C, Dermitzaki E, Alexaki VI, Castanas E, Margioris AN, Gravanis A (2004) Dehydroepiandrosterone and allopregnolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc Natl Acad Sci U S A 101:8209–8214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrobak JJ, Napier TC (1992) Delayed-non-match-to-sample performance in the radial arm maze: effects of dopaminergic and gabaergic agents. Psychopharmacology 108:72–78

    Article  CAS  PubMed  Google Scholar 

  • Cools R (2008) Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist 14:381–395

    Article  CAS  PubMed  Google Scholar 

  • Edwards J, Jackson HJ, Pattison PE (2002) Emotion recognition via facial expression and affective prosody in schizophrenia: a methodological review. Clin Psychol Rev 22:789–832

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1. Behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulated cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113:509–519

    Article  CAS  PubMed  Google Scholar 

  • Field JR, Walker AG, Conn PJ (2011) Targeting glutamate synapses in schizophrenia. Trends Mol Med 17:689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentini C, Guerra N, Facchetti N, Finardi A, Tiberio L, Schiaffonati L, Spano P, Missale C (2002) Nerve growth factor regulates dopamine D(2) receptor expression in prolactinoma cell lines via p75(NGFR)-mediated activation of nuclear factor-kappaB. Mol Endocrinol 16:353–366

    CAS  PubMed  Google Scholar 

  • Fletcher PC, Frith CD, Grasby PM, Friston KJ, Dolan RJ (1996) Local and distributed effects of apomorphine on fronto-temporal function in acute unmedicated schizophrenia. J Neurosci 16:7055–7062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Grasby PM, Bench CJ, Frith CD, Cowen PJ, Liddle PF, Frackowiak RSJ, Dolan R (1992) Measuring the neuromodulatory effects of drugs in men with positron emission tomography. Neurosci Lett 141:106–110

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SE, D’Esposito M (2005) A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology 180:644–653

    Article  CAS  PubMed  Google Scholar 

  • Glajch KE, Ferraiuolo L, Mueller KA, Stopford MJ, Prabhkar V, Gravanis A, Shaw PJ, Sadri-Vakili G (2016) Microneurotrophins improve survival in motor neuron-astrocyte co cultures but do not improve disease phenotypes in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. PLoS One 11:e0164103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gourgiotis I, Kampouri NG, Koulouri V, Lempesis IG, Prasinou MD, Georgiadou G, Pitsikas N (2012) Nitric oxide modulates apomorphine-induced recognition memory deficits in rats. Pharmacol Biochem Behav 102:507–514

    Article  CAS  PubMed  Google Scholar 

  • Grivas V, Markou A, Pitsikas N (2013) The metabotropic glutamate 2/3 receptor agonist LY379268 induces anxiety-like behavior at the highest dose tested in two rat models of anxiety. Eur J Pharmacol 715:105–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guazzo EP, Kirpatrick PJ, Goodyer IM, Shiers HM, Herbert J (1996) Cortisol, dehydroepiandrosterone (DHEA) and DHEA sulfate in the cerebrospinal fluid in man: relation to blood levels and the effects of age. J Clin Endocrinol Metab 81:3951–3960

    CAS  PubMed  Google Scholar 

  • Harris DS, Wolkowitz OM, Reus VI (2001) Movement disorder, memory, psychiatric symptoms and serum DHEA levels in schizophrenic and schizoaffective patients. World J Biol Psychiatry 2:99–102

    Article  CAS  PubMed  Google Scholar 

  • Herbener ES (2008) Emotional memory in schizophrenia. Schizophr Bull 34:875–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Heringa SM, Begemann MJH, Goverde AJ, Sommer IEC (2015) Sex hormones and oxytocin augmentation strategies in schizophrenia: a quantitative review. Schizophr Res 168:603–613

    Article  PubMed  Google Scholar 

  • Ibán-Arias R, Lisa S, Mastrodimou N, Kokona D, Koulakis E, Iordanidou P, Kouvarakis A, Fothiadaki M, Papadogkonaki S, Sotiriou A, Katerinopoulos HE, Gravanis A, Charalampopoulos I, Thermos K (2017) The synthetic microneurotrophin BNN27 affects retinal function in rats with streptozotocin-induced diabetes. Diabetes 67:321–333

    Article  PubMed  CAS  Google Scholar 

  • Ichihara K, Nabeshima T, Kameyama T (1988) Opposite effects induced by low and high doses of apomorphine on single-trial passive avoidance learning in mice. Pharmacol Biochem Behav 30:107–113

    Article  CAS  PubMed  Google Scholar 

  • Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30:188–193

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Remington G (2001) Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia. Annu Rev Med 52:503–517

    Article  CAS  PubMed  Google Scholar 

  • Kilic FS, Kulluk D, Musmul A (2014) Effects of dehydroepiandrosterone in amphetamine-induced schizophrenia models in mice. Neurosciences 19:100–105

    PubMed  Google Scholar 

  • King RA, Glasser RL (1970) Duration of electroconvulsive shock-induced retrograde amnesia in rats. Physiol Behav 5:335–339

    Article  CAS  PubMed  Google Scholar 

  • Kirk RE (1968) Experimental design: procedures for the behavioral science. Brooks/Cole, Belmont

    Google Scholar 

  • Lazaridis I, Charalamopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I, Efstathopoulos P, Calogeropoulou T, Castanas E, Gravanis A (2011) Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS Biol 9:e1001051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch G, Staubli V (1991) Possible contributions of long-term potentiation to the encoding and organization of memory. Brain Res 16:204–206

    Google Scholar 

  • Marx CE, Trost W, Shampine L, Lieberman J, Morrow A, Thakore J (2004) Neuroactive steroids in schizophrenia: relevance to symptoms and therapeutics. Biol Psychiatry 55:171

    Google Scholar 

  • McGrath J, Saha S, Chant T, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence and mortality. Epidemiol Rev 30:67–76

    Article  PubMed  Google Scholar 

  • Montoya A, Lal S, Menear M, Duplessis E, Thavundayil J, Schmitz N, Lepage M (2008) Apomorphine effects on episodic memory in young healthy volunteers. Neuropsychologia 46:292–300

    Article  PubMed  Google Scholar 

  • Moreira JCF, Dal Pizzol F, Bonatto F, Gomez Da Silva E, Flores DG, Picada JN, Roesler R, Pegas Henriques JA (2003) Oxidative damage in brains of mice treated with apomorphine and its oxidized derivative. Brain Res 992:246–251

    Article  CAS  PubMed  Google Scholar 

  • Nachshoni T, Ebert T, Abramovitch Y, Assael-Amir M, Kotler M, Maayan R, Weizman A, Strous RD (2005) Improvement of extrapyramidal symptoms following dehydroepiandrosterone (DHEA) administration in antipsychotic treated schizophrenia patients: a randomized, double-blind placebo controlled trial. Schizophr Res 79:251–256

    Article  PubMed  Google Scholar 

  • Ogren SE (1985) Evidence for a role of brain serotonergic neurotransmission in avoidance learning. Acta Physiol Scand 125(Suppl. 544):1–71

    Google Scholar 

  • Pediaditakis I, Iliopoulos I, Theologidis I, Delivanoglou N, Margioris AN, Charalampopoulos I, Gravanis A (2015) Dehydroepiandrosterone: an ancestral ligand of neurotrophin receptors. Endocrinology 156:16–23

    Article  PubMed  CAS  Google Scholar 

  • Pediaditakis I, Efstathopoulos P, Prousis KC, Zervou M, Arevalo JC, Alexaki VI, Nikoletopoulou V, Karagianni E, Potamitis C, Tavernarakis N, Chavakis T, Margioris AN, Venihaki M, Calogeropoulou T, Charalampopoulos I, Gravanis A (2016) Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology 11:266–282

    Article  CAS  Google Scholar 

  • Perez-Neri I, Montes S, Ojeda-Lopez C, Ramirez-Bermudez J, Rios C (2008) Modulation of neurotransmitter systems by dehydroepiandrosterone and dehydroepiandrosterone sulfate: mechanism of action and relevance to psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 32:1118–1130

    Article  CAS  PubMed  Google Scholar 

  • Picada JN, Schroder N, Izquierdo I, Henriques JAP, Roesler R (2002) Differential neurobehavioral deficits induced by apomorphine and its oxidation product, 8-oxo-apomorphine-semiquinone, in rats. Eur J Pharmacol 443:105–111

    Article  CAS  PubMed  Google Scholar 

  • Picada JN, Roesler R, Henriques JAP (2005) Genotoxic, neurotoxic and neuroprotective activities of apomorphine and its oxidized derivative 8-oxo-apomorphine. Braz J Med Biol Res 38:477–486

    Article  CAS  PubMed  Google Scholar 

  • Pitsikas N (2007) Effects of scopolamine and L-NAME on rats’ performance in the object location test. Behav Brain Res 179:294–298

    Article  CAS  PubMed  Google Scholar 

  • Pitsikas N, Gravanis A (2017) The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts delay-dependent and scopolamine-induced recognition memory deficits in rats. Neurobiol Learn Mem 140:145–153

    Article  CAS  PubMed  Google Scholar 

  • Pitsikas N, Markou A (2014) The metabotropic glutamate 2/3 receptor agonist LY379268 counteracted ketamine-and apomorphine-induced performance deficits in the object recognition task, but not object location task, in rats. Neuropharmacology 85:27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitsikas N, Tarantilis PA (2017) Crocins, the active constituents of Crocus sativus L., counteracted apomorphine-induced performance deficits in the novel object recognition task, but not novel object location task, in rats. Neurosci Lett 644:37–42

    Article  CAS  PubMed  Google Scholar 

  • Ritsner MS, Gibel A, Ratner Y, Tsinovoy G, Strous RD (2006) Improvement of sustained attention and visual and movement skills, but not clinical symptoms, after dehydroepiandrosterone augmentation in schizophrenia: a randomized, double-blind, placebo-controlled, crossover trial. J Clin Psychopharmacol 26:495–499

    Article  CAS  PubMed  Google Scholar 

  • Robel P, Boureau E, Corpehot C, Dang DC, Halberg F, Clarke C, Haug M, Schlegel ML, Synguelakis M, Vourch C, Baulieu EE (1987) Neurosteroids: 3β-hydroxy-δ5-derivatives in rata and monkey brain. J Steroid Biochem 27:649–655

    Article  CAS  PubMed  Google Scholar 

  • Sanchez MG, Bourque M, Morissette M, Di Paolo T (2010) Steroids-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:43–71

    Article  CAS  Google Scholar 

  • Shannon HE, Love PL (2004) Within-session repeated acquisition behavior in rats as a potential model of executive function. Eur J Pharmacol 498:125–134

    Article  CAS  PubMed  Google Scholar 

  • Strous RD, Maayan R, Lapidus R, Stryjer R, Lustig M, Kotler M, Weizman A (2003) Dehydroepiandrosterone augmentation in the management of negative, depressive, and anxiety symptoms in schizophrenia. Arch Gen Psychiatry 60:133–141

    Article  CAS  PubMed  Google Scholar 

  • Strous RD, Stryjer R, Maayan R, Gal G, Viglin D, Katz E, Eisner D, Weizman A (2007) Analysis of clinical symptomatology, extrapyramidal symptoms and neurocognitive dysfunction following dehydroepiandrosterone (DHEA) administration in olanzapine treated schizophrenia patients: a randomized, double-blind placebo controlled trial. Psychoneuroendocrinology 32:96–105

    Article  CAS  PubMed  Google Scholar 

  • Vago DR, Kessner RP (2008) Disruption of the direct perforant path input to the CA1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 189:273–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Vago DR, Bevan A, Kessner RP (2007) The role of the direct perforant path input to the CA1 subregion of the dorsal hippocampus in memory retention and retrieval. Hippocampus 17:977–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Schijndel JE, Van Loo KM, Van Zweeden M, Djurovic S, Andreassen OA, Hansen T, Werge T, Kallunki P, Pedersen JT, Martens GJ (2009) Three-cohort targeted gene screening reveals a non-synonymous TRKA polymorphism associated with schizophrenia. J Psychiatr Res 43:1195–1199

    Article  PubMed  Google Scholar 

  • Van Schijndel JE, Van Zweeden M, Van Loo KM, Djurovic S, Andreassen OA, Hansen T, Werge T, Nyegaard M, Sørensen KM, Nordentoft M, Mortensen PB, Mors O, Børglum AD, Del-Favero J, Norrback KF, Adolfsson R, De Hert M, Claes S, Cichon S, Rietschel M, Nöthen MM, Kallunki P, Pedersen JT, Martens GJ (2011) Dual association of a TRKA polymorphism with schizophrenia. Psychiatr Genet 21:125–131

    Article  PubMed  Google Scholar 

  • Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376–384

    Article  CAS  PubMed  Google Scholar 

  • Wojtal K, Trojnar MK, Czuczwar SJ (2006) Endogenous neuroprotective factors: neurosteroids. Pharmacol Rep 58:335–340

    CAS  PubMed  Google Scholar 

  • Xu TX, Sotnikova TD, Liang C, Zhang J, Jung JU, Spealman RD, Gainetdinov RR, Yao WD (2009) Hyperdopaminergic tone erodes prefrontal long-term potential via a D2 receptor operated protein phosphatase gate. J Neurosci 29:14086–14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo A, Harris J, Dubrovsky B (1996) Dose-response study of dehydroepiandrosterone sulfate on dentate gyrus long term potentiation. Exp Neurol 137:151–156

  • Zoupa E, Gravanis A, Pitsika N (2019) The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts behavioural deficits induced by the NMDA receptor antagonist ketamine in rats. Neuropharmacology 151:74–83

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Pitsikas.

Ethics declarations

Declaration of interests

All authors, except Achille Gravanis, declare that they have not any competing financial interests in relation to the work described. Dr. Achille Gravanis is the co-founder of spin-off Bionature EA LTD, proprietary of compound BNN27 (patented with the WO 2008/ 1555 34 A2 number at the World Intellectual Property Organization).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors declare that the experiments comply with the current laws of Greece.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitsikas, N., Zoupa, E. & Gravanis, A. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts cognitive deficits induced by the D1/D2 dopaminergic receptor agonist apomorphine in rats. Psychopharmacology 238, 227–237 (2021). https://doi.org/10.1007/s00213-020-05672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05672-z

Keywords

Navigation