Skip to main content
Log in

A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the last decade combined quantum mechanic/ molecular mechanic (QM/MM) methods have been applied to a large variety of chemical problems. This paper describes a new QM/MM implementation that acts as a flexible computational environment. Specifically, geometry optimizations, frequency calculations and molecular dynamics can be performed on the investigated system that can be split up to three different layers corresponding to different levels of accuracy. Here we report, together with a detailed description of the method and its implementation, some test examples on very different chemical problems, which span the wide and diversified area of chemistry (from ground to excited states topics) and show the flexibility, general applicability and accuracy of the presented hybrid approach. Biochemical, photobiological and supra/super-molecular applications are presented for this purpose: (a) the optimized geometry of a rotaxane is compared with its X-ray structure; (b) the computed absorption spectra of the green fluorescent protein and rhodopsin chromophores in different environments (namely solvent and protein) are compared to the corresponding experimental values and the role of the counter ion and ion pairs in tuning the geometrical and optical properties of charged organic chromophores in polar solvents is explored and discussed; (c) problems and open questions related to the model set-up of a protein are investigated in the framework of the TcPRAC-protein racemase; (d) similarities and differences between the QM and QM/MM reaction path for the HIV1-protease enzymatic mechanism are shown and discussed; (e) the delicate anomeric equilibrium of α- and β − D-glucopyranose in water is investigated via QM/MM optimizations and molecular dynamics to show the reliability of the actual implementation in the simulation of solvation effects and delicate balances. Finally, it will be shown that the current implementation (called COBRAMM: Computations at Bologna Relating Ab-initio and Molecular Mechanics Methods) is more than a simple QM/MM method, but a more general hybrid approach with a modular structure that is able to integrate some specialized programs, which may increase the flexibility/efficiency of QM, MM and QM/MM calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leach AR (2001) Molecular modelling: principles and applications. Pearson Education EMA, UK, pp 1–744

    Google Scholar 

  2. Jensen F (1999) Introduction to computational chemistry. Wiley, UK, pp 1–429

    Google Scholar 

  3. Bakowies D, Thiel W (1996). J Phys Chem 100:10580–10594

    Article  CAS  Google Scholar 

  4. Sherwood P (2000). NIC series 3:285–305

    Google Scholar 

  5. Warshel A, Levitt M (1976). J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  6. Gao J (1995) KB Lipkowitz, DB Boyd (eds) In: Reviews in computational chemistry, VHC Publishers New York, pp 119–185

  7. Lin H, Truhlar DG (2006). Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  8. Gao J, Truhlar DG (2002). Annu Rev Phys Chem 53:467–505

    Article  CAS  Google Scholar 

  9. Vreven T, Mennucci B, da Silva CO, Morokuma K, Tomasi J (2001). J Chem Phys 115:62–72

    Article  CAS  Google Scholar 

  10. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996). J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  11. Maseras F, Morokuma K (1995). J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  12. Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, et al (2003). J Mol Struct 632:1–28

    CAS  Google Scholar 

  13. Peng C, Ayala PYS, H. Bernhard, Frisch MJ (1996). J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  14. Vreven T, Morokuma K, Farkas Ö, Schlegel HB, Frisch MJ (2003). J Comput Chem 24:760–769

    Article  CAS  Google Scholar 

  15. Klahn M, Braun-Sand S, Rosta E, Warshel A (2005). J Phys Chem B 109:15645–15650

    Article  CAS  Google Scholar 

  16. Field MJ, Bash PA, Karplus M (1990). J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  17. Singh UC, Kollman PA (1986). J Comput Chem 7:718–730

    Article  CAS  Google Scholar 

  18. Ferre N, Olivucci M (2003). J Mol Struct 632:71–82

    Article  CAS  Google Scholar 

  19. Pu J, Gao J, Truhlar DG (2004). J Phys Chem A 108:632–650

    Article  CAS  Google Scholar 

  20. Gao J, Amara P, Alhambra C, Field MJ (1998). J Phys Chem A 102:4714–4721

    Article  CAS  Google Scholar 

  21. Théry V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG (1994). J Comput Chem 15:269–282

    Article  Google Scholar 

  22. Breneman CM, Wiberg KB (1990). J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  23. Singh UC, Kollman PA (1984). J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  24. Besler BH, Jr MKM, Kollman PA (1990). J Comput Chem 11: 431–439

    Article  CAS  Google Scholar 

  25. Karlstrom G, Lindh R, Malmqvist P-A, Roos BO, Ryde U, et al (2003). Comput Mater Sci 28:222–239

    Article  CAS  Google Scholar 

  26. Frisch MJ 2004 Gaussian 03, Revision C.02; Gaussian, Inc., Wallingford CT, 2004.

  27. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989). Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  28. Neese F. 2006. ORCA An ab initio, DFT and semiempirical SCF-MO package.

  29. Sinnecker S, Neese F (2006). J Comput Chem 27:1463–1475

    Article  CAS  Google Scholar 

  30. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, et al (2005). J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  31. Dudek MJ, Ponder JW (1995). J Comput Chem 16:791–816

    Article  CAS  Google Scholar 

  32. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, et al (2003). J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  33. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004). J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  34. Gatti FG, Leon S, Wong JKY, Bottari G, Altieri A, et al (2003). Proc Natl Acad Sci USA 100:10–14

    Article  CAS  Google Scholar 

  35. Allinger NL, Yuh YH, Lii JH (1989). J Am Chem Soc 111: 8551–8556

    Article  CAS  Google Scholar 

  36. Cossi M, Barone V (1998). J Chem Phys 109:6246–6254

    Article  CAS  Google Scholar 

  37. Hawkins GD, Cramer CJ, Truhlar DG (1996). J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  38. Corchado JC, Sanchez ML, Aguilar MA (2004). J Am Chem Soc 126:7311–7319

    Article  CAS  Google Scholar 

  39. Miura N, Taniguchi T, Monde K, Nishimura S-I (2006). Chem Phys Lett 419:326–332

    Article  CAS  Google Scholar 

  40. Momany FA, Appell M, Willett JL, Bosma WB (2005). Carbohydr Res 340:1638–1655

    Article  CAS  Google Scholar 

  41. Momany FA, Appell M, Willett JL, Schnupf U, Bosma WB (2006). Carbohydr Res 341:525–537

    Article  CAS  Google Scholar 

  42. Geerlings P, De Proft F, Langenaeker W (2003). Chemical Reviews 103:1793–1873

    Article  CAS  Google Scholar 

  43. Becke AD (1993). J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  44. Cossi M, Rega N, Scalmani G, Barone V (2003). J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  45. Woods RJ, Dwek RA, Edge C, Fraser-Reid JB (1995). J Phys Chem 99:3832–3846

    Article  CAS  Google Scholar 

  46. He X, Bell AF, Tonge PJ (2002). J Phys Chem B 106:6056–6066

    Article  CAS  Google Scholar 

  47. Nielsen SB, Lapierre A, Andersen JU, Pedersen UV, Tomita S, Andersen LH (2001). Phys Rev Lett 87:228102

    Article  CAS  Google Scholar 

  48. Tsien RY (1998). Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  49. Andersen LH, Nielsen IB, Kristensen MB, ElGhazaly MOA, Haacke S, et al (2005). J Am Chem Soc 127:12347–12350

    Article  CAS  Google Scholar 

  50. Freedman KA, Becker RS (1986). J Am Chem Soc 108:1245– 1251

    Article  CAS  Google Scholar 

  51. Sinicropi A, Andruniow T, Ferre N, Basosi R, Olivucci M (2005). J Am Chem Soc 127:11534–11535

    Article  CAS  Google Scholar 

  52. Altoe P, Bernardi F, Garavelli M, Orlandi G, Negri F (2005). J Am Chem Soc 127:3952–3963

    Article  CAS  Google Scholar 

  53. Jakalian A, Bush BL, Jack DB, Bayly CI (2000). J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  54. Jakalian A, Jack DB, Bayly CI (2002). J Comput Chem 23: 1623–1641

    Article  CAS  Google Scholar 

  55. Martin ME, Negri F, Olivucci M (2004). J Am Chem Soc 126: 5452–5464

    Article  CAS  Google Scholar 

  56. Feese MD, Faber HR, Bystrom CE, Pettigrew DW, Remington SJ (1998). Structure 6:1407–1418

    Article  CAS  Google Scholar 

  57. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005). Nucleic Acids Res 33:368–371

    Article  CAS  Google Scholar 

  58. Creemers TMH, Lock AJ, Subramaniam V, Jovin TM, Volker S (1999). Nat Struct Mol Biol 6:557–560

    Article  CAS  Google Scholar 

  59. Cembran A, Bernardi F, Olivucci M, Garavelli M (2004). J Am Chem Soc 126:16018–16037

    Article  CAS  Google Scholar 

  60. Vreven T, Bernardi F, Garavelli M, Olivucci M, Robb MA, Schlegel HB (1997). J Am Chem Soc 119:12687–12688

    Article  CAS  Google Scholar 

  61. Cembran A, Gonzalez-Luque R, Altoe P, Merchan M, Bernardi F, et al (2005). J Phys Chem A 109:6597–6605

    Article  CAS  Google Scholar 

  62. Andruniow T, Ferre N, Olivucci M (2004). Proc Natl Acad Sci USA 101:17908–17913

    Article  CAS  Google Scholar 

  63. Cembran A, Bernardi F, Olivucci M, Garavelli M (2005). Proc Natl Acad Sci USA 102:6255–6260

    Article  CAS  Google Scholar 

  64. Houjou H, Inoue Y, Sakurai M (1998). J Am Chem Soc 120:4459–4470

    Article  CAS  Google Scholar 

  65. Houjou H, Sakurai M, Inoue Y (1996). Chem Lett 1075–1076

  66. Prabu-Jeyabalan M, Nalivaika E, Schiffer CA (2000). J Mol Biol 301:1207–1220

    Article  CAS  Google Scholar 

  67. Davies DR (1990). Annu Rev Biophys Biophys Chem 19:189–215

    Article  CAS  Google Scholar 

  68. Dreyer GB, Metcalf BW, Tomaszek TA, Carr TJ, Chandler AC, et al (1989). Proc Natl Acad Sci USA 86:9752–9756

    Article  CAS  Google Scholar 

  69. Piana S, Bucher D, Carloni P, Rothlisberger U (2004). J Phys Chem B 108:11139–11149

    Article  CAS  Google Scholar 

  70. Larsson PE, Marti S, Moliner V, Andres J (2004). Abstracts Papers Am Chem Soc 228:U291

    Google Scholar 

  71. Hensen C, Hermann JC, Nam K, Ma S, Gao J, Holtje HD (2004). J Med Chem 47:6673–6680

    Article  CAS  Google Scholar 

  72. Cecconi F, Micheletti C, Carloni P, Maritan A (2001). Proteins: Struct, Funct, Genet 43:365–372

    Article  CAS  Google Scholar 

  73. Warshel A (1998). J Biol Chem 273:27035–27038

    Article  CAS  Google Scholar 

  74. Liu H, Muller-Plathe F, van Gunsteren WF (1996). J Mol Biol 261:454–469

    Article  CAS  Google Scholar 

  75. Lee H, Darden TA, Pedersen LG (1996). J Am Chem Soc 118: 3946–3950

    Article  CAS  Google Scholar 

  76. Piana S, Sebastiani D, Carloni P, Parrinello M (2001). J Am Chem Soc 123:8730–8737

    Article  CAS  Google Scholar 

  77. Harte WEB, Jr. David L (1993). J Am Chem Soc 115:3883–3886

    Article  CAS  Google Scholar 

  78. Rodriguez EJ, Angeles TS, Meek TD (1993). Biochemistry 32:12380–12385

    Article  CAS  Google Scholar 

  79. Hyland LJ, Tomaszek TA, Roberts JGD, Carr SA, Magaard VW, et al (1991). Biochemistry 30:8441–8453

    Article  CAS  Google Scholar 

  80. Hyland LJ, Tomaszek TA, Meek JTD (1991). Biochemistry 30:8454–8463

    Article  CAS  Google Scholar 

  81. Cavalli A, Carloni P, Recanatini M (2006). Chem Rev 106: 3497–3519

    Article  CAS  Google Scholar 

  82. Pillai B, K KK, Hosur, VM (2001). Proteins: Struct Funct Genet 43:57–64

    Article  CAS  Google Scholar 

  83. Bottoni A, Lanza CZ, Miscione GP, Spinelli D (2004). J Am Chem Soc 126:1542–1550

    Article  CAS  Google Scholar 

  84. Bottoni A, Miscione GP, De Vivo M (2005). Proteins: Struct Funct Bioinf 59:118–130

    Article  CAS  Google Scholar 

  85. Scott WRP, Schiffer CA (2000). Structure 8:1259–1265

    Article  CAS  Google Scholar 

  86. Piana S, Carloni P, Parrinello M (2002). J Mol Biol 319:567–583

    Article  CAS  Google Scholar 

  87. Antoniou D, Basner J, Nunez S, Schwartz SD (2006). Chem Rev 106:3170–3187

    Article  CAS  Google Scholar 

  88. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006). Chem Rev 106:3210–3235

    Article  CAS  Google Scholar 

  89. Soriano A, Silla E, Tuñón I, Martí S, Moliner V, Bertrán J (2004). Theor Chem Acc V112:327–334

    CAS  Google Scholar 

  90. Chamond N, Gregoire C, Coatnoan N, Rougeot C, Freitas LH, et al (2003). J Biol Chem 278:15484–15494

    Article  CAS  Google Scholar 

  91. Tonelli RR, Silber AM, Almeida-de-Faria M, Hirata IY, Colli W, Alves MJM (2004). Cell Microbiol 6:733–741

    Article  CAS  Google Scholar 

  92. Buschiazzo A, Goytia M, Schaeffer F, Degrave W, Shepard W, et al (2006). Proc Natl Acad Sci USA 103:1705–1710

    Article  CAS  Google Scholar 

  93. Schellenberg P, Johnson E, Esposito AP, Reid PJ, Parson WW (2001). J Phys Chem B 105:5316–5322

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Garavelli.

Additional information

Contribution to the Fernando Bernardi Memorial Issue

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altoè, P., Stenta, M., Bottoni, A. et al. A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction. Theor Chem Account 118, 219–240 (2007). https://doi.org/10.1007/s00214-007-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0275-9

Keywords

Navigation