Skip to main content
Log in

trans-1,2-Dicyano-cyclopropane and other cyano-cyclopropane derivatives

A theoretical and experimental VA, VCD, Raman and ROA spectroscopic study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work we present the experimental vibrational absorption (VA), vibrational circular dichroism (VCD) and Raman spectra for (+)-trans-1(S),2(S)-dicyanocyclopropane and its dideuterio derivative, trans-1(S),2(S)-dicyano-1(S),2(S)-dideuteriocyclopropane, along with VA, VCD, Raman and Raman optical activity (ROA) spectral simulations. Here we investigate the applicability of various local and non-local exchange-correlation (XC) functionals, hybrids and meta-hybrids to reproduce the vibrational spectra of this strained ring system, which also bears two cyano groups. At the highest level of theory, B3PW91/ aug-cc-pVTZ, we also investigated the trans-, cis- and gem-dicyanocyclopropane (trans-, cis-, and gem-DCCP), cyanocyclopropane (CCP) and the parent molecule cyclopropane (CP). In doing so we have investigated the electronic effects (coupling) between the cyano groups and the cyclopropane ring. In addition to providing an interpretation of the experimentally observed vibrational spectra for these molecules, this work also provides benchmark calculations for other methods, especially semi-empirical based wave function and density functional theory (DFT) based methods, such as SCC-DFTB and PM6. For the semi-empirical DFT based methods to be used for 3-membered ring systems, one ought to document their reliability for systems which were not used in the parameterization. The small 3- and 4-membered ring systems are good test systems because they contain non-standard bonding, which may be difficult to determine accurately with the approximations used in the SCC-DFTB and other semi-empirical methods. Like molecular mechanics force fields, semi-empirical methods, based on DFT and wave function quantum mechanics (WFQM), must be benchmarked against high level ab initio and DFT calculations and experimental data. In addition to bonding, the changes in the electric dipole moment, magnetic dipole moment, electric dipole-electric dipole polarizability, electric dipole-magnetic dipole polarizability and electric dipole-electric quadrupole polarizability with respect to nuclear displacement and nuclear velocity can be determined by the VA, VCD, Raman and ROA intensities. Hence it is important that the semi-empirical based DFT and wave function methods not only be parameterized to determine energies, gradients and Hessians, but also the electric and magnetic moments and their derivatives that determine the electronic and magnetic properties of these molecules and their interactions with matter and radiation. This will allow biochemists, biophysicists, molecular biologists, and physical biologists to use experimental and theoretical VA, VCD, Raman and ROA spectroscopies to probe biophysical and biochemical function and processes at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jalkanen KJ (1989) Ph.D. thesis, University of Southern California, Los Angeles, CA USA

  2. Jalkanen KJ, Stephens PJ, Amos RD and Handy NC (1987). J Am Chem Soc 109: 7193

    CAS  Google Scholar 

  3. El-Azhary AA (1990) Ph.D. thesis, Department of Chemistry, University of Illinois at Chicago (UIC), Chicago, IL, USA

  4. El-Azhary AA, Alper JS, Lowe MA and Keiderling TA (1988). Spectrochimica Acta 44A: 1315

    CAS  Google Scholar 

  5. Heintz VJ and Keiderling TA (1981). J Am Chem Soc 103: 2395

    CAS  Google Scholar 

  6. Schrumpf G and Dunker H (1985). Spectrochim Acta 41: 841

    Google Scholar 

  7. Jalkanen KJ, Bohr HG, Suhai S (1997) In: Suhai S (eds). Proceedings of the international symposium on theoretical and computational genome research. Plenum Press, New York, Spring Street, New York, pp 255–277

  8. Tajkhorshid E, Jalkanen KJ and Suhai S (1998). J Phys Chem B 102: 5899

    CAS  Google Scholar 

  9. Frimand K, Jalkanen KJ, Bohr HG and Suhai S (2000). Chem Phys 255: 165

    CAS  Google Scholar 

  10. Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E and Suhai S (2001). Chem Phys 265: 125

    CAS  Google Scholar 

  11. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2007) Theor Chem Acc. doi:10.1007/s00214-007-0276-8

    Google Scholar 

  12. Jalkanen KJ and Suhai S (1996). Chem Phys 208: 81

    CAS  Google Scholar 

  13. Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS and Jalkanen KJ (1996). J Phys Chem 100: 2025

    CAS  Google Scholar 

  14. Han W-G, Jalkanen KJ, Elstner M and Suhai S (1998). J Phys Chem B 102: 2587

    CAS  Google Scholar 

  15. Bohr HG, Jalkanen KJ, Frimand K, Elstner M and Suhai S (1999). Chem Phys 246: 13

    CAS  Google Scholar 

  16. Deplazes E, van Bronswijk B, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2007) Theor Chem Acc doi:10.1007/s00214-007-0361-z

    Google Scholar 

  17. Knapp-Mohammady M, Jalkanen KJ, Nardi F, Wade RC and Suhai S (1999). Chem Phys 240: 63

    CAS  Google Scholar 

  18. Jalkanen KJ, Nieminen RM, Knapp-Mohammady M and Suhai S (2003). Int J Quantum Chem 92: 239

    CAS  Google Scholar 

  19. Bunte SW, Jensen GM, McNesby KL, Goodin DB, Chabalowski CF, Nieminen RM, Suhai S and Jalkanen KJ (2001). Chem Phys 265: 13

    CAS  Google Scholar 

  20. Jürgensen VW and Jalkanen KJ (2006). Phys Biol 3: S63

    Google Scholar 

  21. Jalkanen KJ, Jürgensen VW, Claussen A, Rahim A, Jensen GM, Wade RC, Nardi F, Jung C, Degtyarenko IM, Nieminen RM, Herrmann F, Knapp-Mohammady M, Niehaus TA, Frimand K and Suhai S (2006). Int J Quantum Chem 106: 1160

    CAS  Google Scholar 

  22. Jalkanen KJ, Jürgensen VW and Degtyarenko IM (2005). Adv Quantum Chem 50: 91

    Article  CAS  Google Scholar 

  23. Jalkanen KJ (2003). J Phys: Condens, Matter 15: S1823

    CAS  Google Scholar 

  24. El-Azhary AA and Al-Kahtani AA (2004). J Phys Chem A 108: 9601

    CAS  Google Scholar 

  25. El-Azhary AA and Al-Kahtani AA (2005). J Phys Chem A 109: 4505

    CAS  Google Scholar 

  26. El-Azhary AA and Al-Kahtani AA (2005). J Phys Chem A 109: 8041

    CAS  Google Scholar 

  27. Al-Rusaese S, Al-Kahtani AA and El-Azhary AA (2006). J Phys Chem A 110: 8676

    CAS  Google Scholar 

  28. Jalkanen KJ, Gale JD, Lassen PR, Hemmingsen L, Rodarte A, Degtyarenko IM, Nieminen RM, Christensen SB, Knapp- Mohammady M, Suhai S (2007) Theor Chem Acc. doi:10.1007/s00214-007-390-7

  29. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S and Seifert G (1998). Phys Rev B 58: 7260

    CAS  Google Scholar 

  30. Stewart JJP (2002). J Comp Chem 10: 209

    Google Scholar 

  31. Stewart JJP (1989). J Comp Chem 10: 209, 221

    Google Scholar 

  32. Jacquemin D, Perpete EA, Scalmani G, Frisch MA, Kobayaahi R and Adamo C (2007). J Chem Phys 126: 144105

    Google Scholar 

  33. Yamanaka S, Nakata K, Ukai T, Takada T and Yamaguchi K (2006). Int J Quantum Chem 106: 3312

    CAS  Google Scholar 

  34. Walsh TR (2005). Phys Chem Chem Phys 7: 443

    CAS  Google Scholar 

  35. Xu X and Goddard WA (2004). Proc Nat Am Soc 101: 2673

    CAS  Google Scholar 

  36. Dierksen M and Grimme S (2004). J Phys Chem A 108: 10225

    CAS  Google Scholar 

  37. Rydberg H, Dion M, Jacobson N, Schroder E, Hyldgaard P, Simak S, Langreth DC and Lundquist BI (2003). Phys Rev Lett 91: 126402

    CAS  Google Scholar 

  38. Wilson PJ, Amos RD and Handy NC (1999). Chem Phys Lett 312: 475

    CAS  Google Scholar 

  39. Snijders JG, Baerends EJ and van Gisbergen SJA (1998). J Chem Phys 109: 10644

    Google Scholar 

  40. Kootstra K, Schipper PRT, Gritsenko OV, Snijders JG, Baerends EJ and van Gisbergen SJA (1998). Phys Rev A 57: 2556

    Google Scholar 

  41. Snijders JG, Baerends EJ and van Gisbergen SJA (1996). Chem Phys Lett 259: 599

    Google Scholar 

  42. Kohn W, Meir Y and Makarov DE (1998). Phys Rev Lett 80: 4153

    CAS  Google Scholar 

  43. Tozer DJ and Handy NC (1998). J Phys Chem A 102: 3162

    CAS  Google Scholar 

  44. Becke AD (1997). J Chem Phys 107: 8554

    CAS  Google Scholar 

  45. Becke AD (1996). J Chem Phys 104: 1040

    CAS  Google Scholar 

  46. Snijders JG, Baerends EJ and Gisbergen SJA (1995). J Chem Phys 103: 9347

    Google Scholar 

  47. Lee AM and Colwell SM (1994). J Chem Phys 101: 9704

    CAS  Google Scholar 

  48. Colwell SM, Murray CW, Handy NC and Amos RD (1993). Chem Phys Lett 210: 261

    CAS  Google Scholar 

  49. Handy NC, Tozer DJ, Laming GJ, Murray CW and Amos RD (1993). Isr J Chem 33: 331

    CAS  Google Scholar 

  50. Becke AD (1993). J Chem Phys 98: 5648

    CAS  Google Scholar 

  51. Becke AD (1992). J Chem Phys 97: 9173

    CAS  Google Scholar 

  52. Becke AD (1992). J Chem Phys 96: 2155

    CAS  Google Scholar 

  53. Murray CW, Laming GJ, Handy NC and Amos RD (1992). Chem Phys Lett 199: 551

    CAS  Google Scholar 

  54. Becke AD (1988). Phys Rev A 38: 3098

    CAS  Google Scholar 

  55. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785

    CAS  Google Scholar 

  56. Shono T, Morikawa T, Okayama R-I and Oda R (1965). Die Makromoleculare Chemie 81: 142

    CAS  Google Scholar 

  57. Oda R, Shono T, Oku A and Tako H (1963). Die Makromolekulare Chemie 67: 124

    CAS  Google Scholar 

  58. Alberts IL, Andrews JS, Colwell SM, Handy NC, Jayatilaka D, Knowles PJ, Kobayashi R, Laidig KE, Laming G, Lee AM, Maslen PE, Murray CW, Rice JE, Simandiras ED, Stone AJ, Su M-D and Tozer DJ (2001). Cambridge Analytical Derivatives Package (CADPAC), 5th edn. Cambridge University, Cambridge

    Google Scholar 

  59. Jalkanen KJ, Devlin F, Polanski T, Amos RD, Handy NC and Stephens PJ (1988). In: 43nd Symposium on molecular spectroscopy. Ohio State University, Columbus OH, USA

    Google Scholar 

  60. Jalkanen KJ, Kawiecki RW, Amos RD, Handy NC, Lazzeretti P, Zanasi R and Stephens PJ (1987). In: 42nd Symposium on molecular spectroscopy. Ohio State University, Columbus OH, USA

    Google Scholar 

  61. Blom CE and Altona C (1976). Mol Phys 31: 1377

    CAS  Google Scholar 

  62. Scott WRP, Huenenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krueger P and Gunsteren WF (1999). J Phys Chem 103: 3596

    CAS  Google Scholar 

  63. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S and Karplus M (1983). J Comp Chem 4: 187

    CAS  Google Scholar 

  64. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K and Schulten K (1999). J Comp Phys 151: 283

    CAS  Google Scholar 

  65. Jorgensen WL, Madura JD and Swenson CJ (1984). J Am Chem Soc 106: 6638

    CAS  Google Scholar 

  66. Jorgensen WL and Swenson CJ (1985). J Am Chem Soc 107: 569

    CAS  Google Scholar 

  67. Jorgensen WL and Swenson CJ (1985). J Am Chem Soc 107: 1489

    CAS  Google Scholar 

  68. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Fergusson DM, Spellmeyer DC, Fox T, Caldwell JW and Kollman PA (1995). J Am Chem Soc 117: 5179

    CAS  Google Scholar 

  69. Weiner SJ, Kollman PA, Nguyen DT and Case DA (1986). J Comp Chem 7: 230

    CAS  Google Scholar 

  70. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Weiner P and Profeta S (1984). J Am Chem Soc 106: 765

    CAS  Google Scholar 

  71. Maple JR, Hwang M-J, Jalkanen KJ, Stockfisch TP and Hagler AT (1998). J Comp Chem 19: 430

    CAS  Google Scholar 

  72. Talman JD and Shadwick WF (1976). Phys Rev A 14: 36

    CAS  Google Scholar 

  73. Hirata S, Ivanov S, Grabowski I, Bartlett RJ, Burke K and Talman JD (2001). J Chem Phys 115: 1635

    CAS  Google Scholar 

  74. Heaton-Burgess T, Bulat FA and Yang W (2007). Phys Rev Lett 98: 256401

    Google Scholar 

  75. Dunning TH (1970). J Chem Phys 53: 2823

    CAS  Google Scholar 

  76. Jalkanen KJ and Stephens PJ (1991). J Phys Chem 95: 5446

    CAS  Google Scholar 

  77. Kearley GJ (1995). Nucl Instrum Methods Phys Res A 354: 53

    CAS  Google Scholar 

  78. Ordejon P, Artacho E and Soler JM (1996). Phys Rev B (Rapid Comm) 53: R10441

    CAS  Google Scholar 

  79. Soler JM, Artacho E, Gale J, Garcia A, Junquera J, Ordejon P and Sanchez-Portal D (2002). J Phys Condens Matter 14: 2745

    CAS  Google Scholar 

  80. Perdew JP, Burke K and Ernyerhoh M (1996). Phys Rev Lett 77: 3865

    CAS  Google Scholar 

  81. Elstner M, Jalkanen KJ, Knapp-Mohammadi M, Frauenheim Th and Suhai S (2001). Chem Phys 263: 203

    CAS  Google Scholar 

  82. Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim Th, Suhai S (2000) Chem Phys 256

  83. Grubmüller H (1995). Phys Rev E 52: 2893

    Google Scholar 

  84. Müller EM, Grubmúller H and Meijere A (2002). J Chem Phys 116: 897

    Google Scholar 

  85. Lange OF, Schäfer LV and Grubmüller H (2006). J Comp Chem 27: 1693

    CAS  Google Scholar 

  86. Stephens PJ, Jalkanen KJ, Amos RD, Lazzeretti P and Zanasi R (1990). J Phys Chem 94: 1811

    CAS  Google Scholar 

  87. Jalkanen KJ, Stephens PJ, Lazzeretti P and Zanasi R (1988). J Chem Phys 90: 3204

    Google Scholar 

  88. Amos RD, Jalkanen KJ and Stephens PJ (1988). J Phys Chem 92: 5571

    CAS  Google Scholar 

  89. Stevens RM, Pitzer RM and Lipscomb WN (1963). J Chem Phys 38: 550

    CAS  Google Scholar 

  90. Rohra S and Görling A (2006). Phys Rev Lett 97: 013005

    Google Scholar 

  91. Becke AD (2002). J Chem Phys 117: 6935

    CAS  Google Scholar 

  92. Lee AM and Handy NC (1999). Phys Rev A 59: 209

    CAS  Google Scholar 

  93. Buehl M, Kaupp M, Malkina OL and Malkin VG (1998). J Comp Chem 20: 91

    Google Scholar 

  94. Colwell S, Handy NC and Lee AM (1996). Phys Rev A 53: 1316

    CAS  Google Scholar 

  95. Lee AM, Handy NC and Colwell SM (1995). J Chem Phys 103: 10095

    CAS  Google Scholar 

  96. Malkin VG, Malkina OL, Eriksson LA and Salahub DR (1995). Theor Comput Chem Mod Density Funct Theory 2: 273

    CAS  Google Scholar 

  97. Malkin VG, Malkina OL, Casida ME and Salahub DR (1994). J Am Chem Soc 116: 5898

    CAS  Google Scholar 

  98. Lee AM, Colwell SM and Handy NC (1994). Chem Phys Lett 229: 225

    CAS  Google Scholar 

  99. Colwell SM and Handy NC (1994). Chem Phys Lett 217: 271

    Google Scholar 

  100. Malkin VG, Malkina OL and Salahub DR (1993). Chem Phys Lett 204: 80

    CAS  Google Scholar 

  101. Malkin VG, Malkina OL and Salahub DR (1993). Chem Phys Lett 204: 87

    CAS  Google Scholar 

  102. Vignale G and Rasolt M (1989). Phys Rev B 39: 5475

    Google Scholar 

  103. Vignale G and Rasolt M (1988). Phys Rev B 37: 10685

    Google Scholar 

  104. Vignale G and Rasolt M (1989). Phys Rev Lett 62: 115

    CAS  Google Scholar 

  105. Vignale G and Rasolt M (1987). Phys Rev Lett 59: 2360

    CAS  Google Scholar 

  106. Hehre WJ, Stewart RF and Pople JA (1969). J Chem Phys 51: 2657

    CAS  Google Scholar 

  107. Binkley JS, Pople JA and Hehre WJ (1989). J Am Chem Soc 102: 939

    Google Scholar 

  108. Hehre WJ, Ditchfield R and Pople JA (1972). J Chem Phys 56: 2257

    CAS  Google Scholar 

  109. Lowe MA, Alper JS, Kawiecki RW and Stephens PJ (1986). J Phys Chem 90: 41

    CAS  Google Scholar 

  110. Lowe MA and Alper JS (1988). J Phys Chem 92: 4035

    CAS  Google Scholar 

  111. Kawiecki RW, Devlin F, Stephens PJ, Amos RD and Handy NC (1988). Chem Phys Lett 145: 411

    CAS  Google Scholar 

  112. Kawiecki RW (1988) Ph.D. thesis, University of Southern California, Los Angeles, CA, USA

  113. Kawiecki RW, Devlin FJ, Stephens PJ and Amos RD (1991). J Phys Chem 95: 9817

    CAS  Google Scholar 

  114. Dunning TH (1971). J Chem Phys 55: 716

    CAS  Google Scholar 

  115. Bartlett RJ, Lotrich VF and Schwiegert IV (2005). J Chem Phys 123: 062205

    Google Scholar 

  116. Bartlett RJ, Grabowski I, Hirata S and Ivanov S (2005). J Chem Phys 122: 034104

    Google Scholar 

  117. El-Azhary AA and Sutter HU (1996). J Phys Chem 100: 15056

    CAS  Google Scholar 

  118. El-Azhary AA (2003). Spectrochima Acta A 59: 2009

    CAS  Google Scholar 

  119. Bürgi HB (2000). Annu Rev Phys Chem 51: 275

    Google Scholar 

  120. Partal F, Fernandez-Gomez M, Lopez-Gonzalez JJ, Navarro A and Kearley GJ (2000). Chem Phys 261: 239

    CAS  Google Scholar 

  121. Kearley GJ, Coddens G, Fillaux F, Tomkinson J and Wegener W (1993). Chem Phys 176: 279

    CAS  Google Scholar 

  122. Kearley GJ, Tomkinson J and Penfold J (1987). Zeitschrift für Pysik B 69: 63

    CAS  Google Scholar 

  123. Kearley GJ (1986). J Chem Soc Faraday Trans 2(82): 41

    Google Scholar 

  124. Tomkinson J, Warner M and Taylor AD (1984). Mol Phys 51: 381

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Jalkanen.

Additional information

Festschrift in Honor of Philip J. Stephens’ 65th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalkanen, K.J., Gale, J.D., Jalkanen, G.J. et al. trans-1,2-Dicyano-cyclopropane and other cyano-cyclopropane derivatives. Theor Chem Account 119, 211–229 (2008). https://doi.org/10.1007/s00214-007-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0391-6

Keywords

Navigation