Skip to main content
Log in

Core-valence correlating basis sets for alkali and alkaline earth metal atoms

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

For 12 alkali and alkaline earth metal atoms from Li to Ra, contracted Gaussian-type function sets are developed for the description of correlations among the (n−1)s, (n−1)p, and ns electrons, where n is the principal quantum number of the outermost shell. A segmented contraction scheme is employed for the compactness and efficiency. Contraction coefficients and exponents are determined so that the deviation from accurate natural orbitals of the ground states is minimized. For heavy atoms from Cs to Ra, the spin-free relativistic effects are considered through the third-order Douglas–Kroll approximation. To test the present correlating sets, all-electron calculations are performed for the ground state of 12 diatomic hydrides, 6 alkali metal dimers, 4 alkaline earth metal oxides, and 12 diatomic fluorides. The calculated spectroscopic constants are in excellent agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572

    Article  CAS  Google Scholar 

  2. Martin JML, Taylor PR (1994) Chem Phys Lett 225:473

    Article  CAS  Google Scholar 

  3. Peterson KA, Dunning TH Jr (2002) J Chem Phys 117:10548

    Article  CAS  Google Scholar 

  4. Blaudeau J-P, McGrath MP, Curtiss A, Radom L (1997) J Chem Phys 107:5016

    Article  CAS  Google Scholar 

  5. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  6. Partridge H, Bauschlicher CW Jr, Walch SP, Liu B (1983) J Chem Phys 79:1866

    Article  CAS  Google Scholar 

  7. Iron MA, Oren M, Martin JML (2003) Mol Phys 101:1345

    Article  CAS  Google Scholar 

  8. Noro T, Sekiya M, Koga T (1997) Theor Chem Acc 98:25

    CAS  Google Scholar 

  9. Sekiya M, Noro T, Koga T, Matsuyama H (1998) J Mol Struct (Teochem) 451:51

    Article  CAS  Google Scholar 

  10. Sekiya M, Noro T, Osanai Y, Koga T (2001) Theor Chem Acc 106:297

    CAS  Google Scholar 

  11. Noro T, Sekiya M, Koga T (2003) Theor Chem Acc 109:85

    CAS  Google Scholar 

  12. Noro T, Sekiya M, Osanai Y, Miyoshi E, Koga T (2003) J Chem Phys 119:5142

    Article  CAS  Google Scholar 

  13. Sekiya M, Noro T, Miyoshi E, Osanai Y, Koga T (2006) J Comp Chem 27:463

    Article  CAS  Google Scholar 

  14. Nakajima T, Hirao K (2000) J Chem Phys 113:7786

    Article  CAS  Google Scholar 

  15. Powell MJD (1964) Comput J 7:155

    Article  Google Scholar 

  16. Sasaki F, Sekiya M, Noro T, Ohtsuki K, Osanai Y (1993) Non-relativistic configuration interaction calculations for many-electron atoms: ATOMCI. In: Clementi E (ed) METECC-94, STEF, Cagliari

  17. Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207

    Article  CAS  Google Scholar 

  18. Huzinaga S, Miguel B (1990) Chem Phys Lett 175:289

    Article  CAS  Google Scholar 

  19. Huzinaga S, Klobukowski M (1993) Chem Phys Lett 212:260

    Article  CAS  Google Scholar 

  20. Koga T, Tatewaki H, Shimazaki T (2000) Chem Phys Lett 328:473

    Article  CAS  Google Scholar 

  21. Yamamoto H, Matsuoka O (1992) Bull Univ Electro Comm 5:23

    CAS  Google Scholar 

  22. Tatewaki H, Koga T (1996) J Chem Phys 104:8493

    Article  CAS  Google Scholar 

  23. Karlstrom G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comp Mat Sci 28:222

    Article  CAS  Google Scholar 

  24. Boys SF, Bernardi F (1970) Mol Phys 19:203

    Article  Google Scholar 

  25. Uehara H, Horiai K, Konno T (1997) J Mol Struct 413:457

    Article  Google Scholar 

  26. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York

  27. Dulick M, Zhang K-Q, Guo B, Bernath PF (1998) J Mol Spectrosc 188:14

    Article  CAS  Google Scholar 

  28. Colin R, De Greef D (1975) Can J Phys 53:2142

    Article  CAS  Google Scholar 

  29. Pesl FP, Lutz S, Bergmann K (2000) Eur Phys J D 10:247

    Article  CAS  Google Scholar 

  30. Lemoine B, Demuynck C, Destombes JL, Davies PB (1988) J Chem Phys 89:673

    Article  CAS  Google Scholar 

  31. Petitprez D, Lemoine B, Demuynck C, Destombes JL, Macke B (1989) J Chem Phys 91:4462

    Article  CAS  Google Scholar 

  32. Amiot C, Vergès J, and Fellows CE (1995) J Chem Phys 103:3350

    Article  CAS  Google Scholar 

  33. Amiot C, Crozet P, Vergès J (1985) Chem Phys Lett 121:390

    Article  CAS  Google Scholar 

  34. Muntianu A, Guo B, Bernath PF (1996) J Mol Spectrosc 176:274

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Miyoshi and Dr. Nakayama for helpful discussion. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Noro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noro, T., Sekiya, M. & Koga, T. Core-valence correlating basis sets for alkali and alkaline earth metal atoms. Theor Chem Account 121, 289–295 (2008). https://doi.org/10.1007/s00214-008-0476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0476-x

Keywords

Navigation