Skip to main content
Log in

The lithium–thiophene interaction: a critical study using highly correlated electronic structure approaches of quantum chemistry

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The fundamental multicentric interaction of a lithium atom with a single thiophene ring is addressed. A systematic study of the interaction energy (IE) and geometry for the Li–T charge-transfer complex is done at the MP2 and CCSD(T) levels using increasingly large basis sets up to aug-cc-pVQZ (AVQZ). Basis set superposition errors (BSSE) are evaluated and shown to have a major impact on the value of the IE. The Fixed-Node Diffusion Monte Carlo (FN-DMC) method is used as an alternative basis-set-free approach to obtain what is likely to be the most accurate estimate of the IE obtained so far. While counterpoise-corrected MP2/AVQZ and CCSD(T)/AVTZ interaction energies are found to be −3.8 and −7.5 kcal/mol, the FN-DMC method yields +1.3 ± 1.7 kcal/mol. The slow convergence of the ab initio IE (and some key structural parameters) with respect to basis set quality and the discrepancy with the FN-DMC result is discussed. A visualization of the electron pairing using the electron pair localization function (EPLF) for the Li-doped versus undoped thiophene is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. To give an idea of the computational resources required with the largest basis set, the MP2/AVQZ optimization of LiT used more than 150 GB of disk space, 27 GB of RAM and took 5 days on 8 processors starting from the MP2/AVTZ optimized geometry.

  2. The CCSD(T)/AVTZ calculations for LiT already involve about 1.5 × 107 CSF.

References

  1. Skotheim TA (ed) (1986) Handbook of conducting polymers, vols I, II. Dekker, New York

    Google Scholar 

  2. McGehee MD, Miller EK, Moses D, Heeger AJ (1999) In: Bernier P et al (eds) Advances in synthetic metals: twenty years of progress in science and technology. Elsevier, Amsterdam

  3. Frommer JE, Chance PR (1986) Encyclopedia of polymer science and engineering. Wiley, New York

    Google Scholar 

  4. Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Rev Mod Phys 60:781

    Article  CAS  Google Scholar 

  5. Brédas J-L, Chance RR (1990) Conjugated polymeric materials: opportunities in electronics, optoelectronics and molecular electronics. NATO-ASI Series E182. Kluwer, Dodrecht

  6. Brédas J-L, Silbey R (1991) Conjugated polymers: the novel science and technology of highly conducting and nonlinear optically active materials. Kluwer, Dordrecht

    Google Scholar 

  7. Brédas J-L, Themans B, Fripiat JG, André JM, Chance RR (1984) Phys Rev 29:6761

    Article  Google Scholar 

  8. Ramírez-Solís A, Kirtman B, Bernal R, Zicovich-Wilson CM (2009) J Chem Phys 130:164904

    Article  CAS  Google Scholar 

  9. Irle S, Lischka H (1995) J Chem Phys 103:1508

    Article  CAS  Google Scholar 

  10. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  11. Baker J, Nobes RH, Radom L (1986) J Comput Chem 7:349

    Article  CAS  Google Scholar 

  12. Coppens P, Hall MB (eds) (1982) Electron distributions and chemical bonds. Plenum, New York

    Google Scholar 

  13. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  14. Gadre SR, Kulkarni SA, Shrivastava IH (1992) J Chem Phys 96:5253

    Article  CAS  Google Scholar 

  15. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  16. Silvi B, Savin A (1994) Nature 371:683–686

    Article  CAS  Google Scholar 

  17. Scemama A, Chaquin P, Caffarel M (2004) J Chem Phys 121:1725

    Article  CAS  Google Scholar 

  18. Amador-Bedolla C, Salomón-Ferrer R, Lester WA, Vázquez-Martínez JA, Aspuru-Guzik A (2007) J Chem Phys 126:204308

    Article  CAS  Google Scholar 

  19. Scemama A, Caffarel M, Ramírez-Solís A (2009) J Phys Chem A 113:9014

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JJA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andrés JL, Gonzlez C, Head-Gordon M, Replogle ES, Pople JA (2002) Gaussian 98 Revision A.11.3. Pittsburg, USA

  21. Hammond BL, Lester WA Jr, Reynolds PJ (1994) Monte Carlo methods in ab initio quantum chemistry. World Scientific Lecture and Course Notes in Chemistry, vol 1

  22. Schmidt KE, Moskowitz JW (1990) J Chem Phys 93:4172

    Article  CAS  Google Scholar 

  23. Assaraf R, Caffarel M (2000) J Chem Phys 113:4028

    Article  CAS  Google Scholar 

  24. Umrigar CJ, Wilson KG, Wilkins JW (1988) Phys Rev Lett 60:1709

    Article  Google Scholar 

  25. Scemama A, Leliévre T, Stoltz G, Cancés, Caffarel M (2006) J Chem Phys 125:114105

    Article  CAS  Google Scholar 

  26. Flad HJ, Caffarel M, Savin A (1997) Quantum Monte Carlo calculations with multi-reference trial wave functions. Recent advances in quantum Monte Carlo methods. World Scientific Publishing, Singapore

  27. Grossman JC (2004) J Chem Phys 117:1434

    Article  CAS  Google Scholar 

  28. Manten S, Lüchow A (2001) J Chem Phys 115:5362

    Article  CAS  Google Scholar 

  29. Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) J Chem Phys 90:5622

    Article  CAS  Google Scholar 

  30. Assaraf R, Caffarel M (2000) J Chem Phys 113:4028

    Article  CAS  Google Scholar 

  31. Filippi C, Umrigar CJ (1996) J Chem Phys 105:213

    Article  CAS  Google Scholar 

  32. Clementi E, Roetti C (1974) Atomic Data and Nuclear Data Tables 14:177

  33. Manten S, Lüchow A (2001) J Chem Phys 115:5362

    Google Scholar 

  34. Casado J, Hernández V, Hotta S, López-Navarrete JT (1998) J Chem Phys 109:10419

    Article  CAS  Google Scholar 

  35. Davidson ER, Hagstrom SA, Chakravorty SJ, Meiser Umar V, Froese Fischer C (1991) Phys Rev A 44:7071

    Article  CAS  Google Scholar 

  36. Bouabça T, Caffarel M, Ben Amor N, Maynau D (2009) J Chem Phys 130:114107

    Article  CAS  Google Scholar 

  37. Caffarel M, Hernández-Lamoneda R, Scemama A, Ramirez-Solis A (2007) Phys Rev Lett 99:153001

    Article  CAS  Google Scholar 

  38. Caffarel M, Assaraf R, Khelif A, Scemama A, Ramirez-Solís A (2006) In: Lebris C, Esteban M, Scuseria G (eds) Mathematical and numerical aspects of quantum chemistry problems. Mathematisches Forschunginstitut Oberwolfach Report 47, 7

  39. Filippi C, Umrigar CJ (2000) Phys Rev B 61:R16291

    Article  CAS  Google Scholar 

  40. Assaraf R, Caffarel M (2003) J Chem Phys 119:10536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Caffarel and A. Scemama would like to thank IDRIS (CNRS, Orsay), CCRT (CEA/DAM, Ile-de-France), CALMIP (Université de Toulouse) for computational support. A. Ramírez-Solís wishes to thank the FOMES2000 “Cómputo Científico” Project for CPU time on the IBM-p690 supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ramírez-Solís.

Additional information

Dedicated to the memory of Professor Jean-Pierre Daudey and published as part of the Daudey Memorial Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffarel, M., Scemama, A. & Ramírez-Solís, A. The lithium–thiophene interaction: a critical study using highly correlated electronic structure approaches of quantum chemistry. Theor Chem Acc 126, 275–287 (2010). https://doi.org/10.1007/s00214-009-0713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0713-y

Keywords

Navigation