Skip to main content
Log in

Fully relativistic theories and methods for NMR parameters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Nuclear magnetic shielding and spin–spin coupling constants are intrinsically all-electron relativistic properties and demand in principle fully relativistic treatments. Here, the magnetic balance (MB) condition plays an essential role, both conceptually and computationally. The various formulations can be unified in terms of the idea of "orbital decomposition." Further combined with the ansatz of "gauge-including atomic orbitals" (GIAO) for distributed gauge origins leads to very efficient four-component relativistic methods at both the mean-field and correlated levels. To illustrate the latter, the no-pair MB-GIAO-MP2 expressions for nuclear shieldings are derived in two different ways, one with the derivative technique and the other through the induced current. Due to the non-variational nature of MP2, the two expressions are not identical. The current-dependent expression is much simpler and appears more natural in view of the experimental measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Equation 34 in Ref. [17] turns out to be inappropriate and should be replaced with the present Eq. 61.

References

  1. Zaccari D, Ruizde Azúa MC, Giribet CG (2007) Phys Rev A 76:022105

    Article  Google Scholar 

  2. Xiao Y, Liu W, Cheng L, Peng D (2007) J Chem Phys 126:214101

    Article  Google Scholar 

  3. Cheng L, Xiao Y, Liu W (2009) J Chem Phys 130:144102

    Article  Google Scholar 

  4. Ramsey NF (1950) Phys Rev 78:699

    Article  CAS  Google Scholar 

  5. Feiock FD, Johnson WR (1968) Phys Rev Lett 21:785

    Article  CAS  Google Scholar 

  6. Feiock FD, Johnson WR (1969) Phys Rev 187:69

    Article  Google Scholar 

  7. Kolb D, Johnson WR, Shorer P (1982) Phys Rev A 26:19

    Article  CAS  Google Scholar 

  8. Pyykkö P (1977) Chem Phys 22:289

    Article  Google Scholar 

  9. Pyykkö P (1983) Chem Phys 74:1

    Article  Google Scholar 

  10. Aucar GA, Oddershede J (1993) Int J Quantum Chem 47:425

    Article  CAS  Google Scholar 

  11. Vaara J, Pyykkö P (2003) J Chem Phys 118:2973

    Article  CAS  Google Scholar 

  12. Pecul M, Saue T, Ruud K, Rizzo A (2004) J Chem Phys 121:3051

    Article  CAS  Google Scholar 

  13. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  14. Kutzelnigg W (2003) Phys Rev A 67:032109

    Article  Google Scholar 

  15. Aucar GA, Saue T, Visscher L, Jensen HJAa (1999) J Chem Phys 110:6208

    Article  CAS  Google Scholar 

  16. Visscher L (2005) Adv Quantum Chem 48:369

    Article  Google Scholar 

  17. Sun Q, Liu W, Kutzelnigg W (2011) Theor Chem Acc 129:423

    Article  CAS  Google Scholar 

  18. Kutzelnigg W (1999) J Comput Chem 20:1199

    Article  CAS  Google Scholar 

  19. Kutzelnigg W (2004) Calculation of NMR and EPR parameters: theory and applications. In: Kaupp M, Bühl M, Malkin VG (eds) Wiley-VCH, p 43

  20. London F (1937) J Phys Rad 8:397

    Article  CAS  Google Scholar 

  21. Ditchfield R (1972) J Chem Phys 56:5688

    Article  CAS  Google Scholar 

  22. Ditchfield R (1974) Mol Phys 27:789

    Article  CAS  Google Scholar 

  23. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  24. Cheng L, Xiao Y, Liu W (2009) J Chem Phys 131:244113

    Article  Google Scholar 

  25. Manninen P, Vaara J (2006) J Chem Phys 124:137101

    Article  Google Scholar 

  26. Lantto P, Romero RH, Gómez SS, Aucar GA, Vaara J (2006) J Chem Phys 125:184113

    Article  Google Scholar 

  27. Manninen P, Ruud K, Lantto P, Vaara J (2005) J Chem Phys 122:114107

    Article  Google Scholar 

  28. Manninen P, Ruud K, Lantto P, Vaara J (2006) J Chem Phys 124:149901(E)

    Google Scholar 

  29. Maldonado AF, Aucar GA (2009) Phys Chem Chem Phys 11:5615

    Article  CAS  Google Scholar 

  30. Ishikawa Y, Nakajima T, Hada M, Nakatsuji H (1998) Chem Phys Lett 283:119

    Article  CAS  Google Scholar 

  31. Hada M, Ishikawa Y, Nakatani J, Nakatsuji H (1999) Chem Phys Lett 310:342

    Article  CAS  Google Scholar 

  32. Hada M, Fukuda R, Nakatsuji H (2000) Chem Phys Lett 321:452

    Article  CAS  Google Scholar 

  33. Kato K, Hada M, Fukuda R, Nakatsuji H (2005) Chem Phys Lett 408:150

    Article  CAS  Google Scholar 

  34. Visscher L, Enevoldsen T, Saue T, Jensen HJAa, Oddershede J (1999) J Comput Chem 20:1262

    Article  CAS  Google Scholar 

  35. Zhang ZC, Webb GA (1983) J Mol Struct (THEOCHEM) 104:439

    Article  Google Scholar 

  36. Quiney HM, Skaane H, Grant IP (1998) Chem Phys Lett 290:473

    Article  CAS  Google Scholar 

  37. Quiney HM, Skaane H, Grant IP (1999) Adv Quantum Chem 32:1

    Article  Google Scholar 

  38. Grant IP, Quiney HM (2000) Int J Quantum Chem 80:283

    Article  CAS  Google Scholar 

  39. Iliaš M, Saue T, Enevoldsen T, Jensen HJAa (2009) J Chem Phys 131:124119

    Article  Google Scholar 

  40. Komorovsky S, Repisky M, Malkina OL, Malkin VG, Ondík IM, Kaupp M (2008) J Chem Phys 128:104101

    Article  Google Scholar 

  41. Hamaya S, Fukui H (2010) Bull Chem Soc Jpn 83:635

    Article  CAS  Google Scholar 

  42. Komorovsky S, Repisky M, Malkina OL, Malkin VG (2010) J Chem Phys 132:154101

    Article  Google Scholar 

  43. Aucar GA, Romero RH, Maldonado AF (2010) Int Rev Phys Chem 29:1

    Article  CAS  Google Scholar 

  44. Xiao Y, Peng D, Liu W (2007) J Chem Phys 126:081101

    Article  Google Scholar 

  45. Kutzelnigg W, Liu W (2009) J Chem Phys 131:044129

    Article  Google Scholar 

  46. Sternheim MM (1962) Phys Rev 128:676

    Article  CAS  Google Scholar 

  47. Pyper NC (1983) Chem Phys Lett 96:204

    Article  CAS  Google Scholar 

  48. Pyper NC (1999) Mol Phys 97:381

    Article  CAS  Google Scholar 

  49. Pyper NC, Zhang ZC (1999) Mol Phys 97:391

    Article  CAS  Google Scholar 

  50. Szmytkowski R (2002) Phys Rev A 65:03112

    Article  Google Scholar 

  51. Zaccari DG, Ruizde Azúa MC, Melo JI, Giribet CG (2006) J Chem Phys 124:054103

    Article  CAS  Google Scholar 

  52. Luber S, Malkin Ondík I, Reiher M (2009) Chem Phys 356:205

    Article  CAS  Google Scholar 

  53. Dyall KG, Fæ gri K Jr. (2007) Introduction to relativistic quantum chemistry. Oxford University Press, New York

    Google Scholar 

  54. Repiský M, Komorovský S, Malkina OL, Malkin VG (2009) Chem Phys 356:236

    Article  Google Scholar 

  55. Sun Q, Liu W, Xiao Y, Cheng L (2009) J Chem Phys 131:081101

    Article  Google Scholar 

  56. Shabaev VM, Tupitsyn II, Yerokhin VA, Plunien G, Soff G (2004) Phys Rev Lett 93:130405

    Article  CAS  Google Scholar 

  57. Kutzelnigg W (1984) Int J Quantum Chem 25:107

    Article  CAS  Google Scholar 

  58. Dyall KG (1994) J Chem Phys 100:2118

    Article  CAS  Google Scholar 

  59. Kutzelnigg W, Liu W (2005) J Chem Phys 123:241102

    Article  Google Scholar 

  60. Liu W (2010) Mol Phys 108:1679

    Article  CAS  Google Scholar 

  61. Eschrig H, Servedio VDP (1999) J Comput Chem 20:23

    Article  CAS  Google Scholar 

  62. Wang F, Liu W (2003) J Chin Chem Soc (Taipei) 50:597

    CAS  Google Scholar 

  63. Kutzelnigg W (2011) Chem Phys (in press), doi:10.1016/j.chemphys.2011.06.001)

  64. Salter EA, Trucks GW, Bartlett RJ (1989) J Chem Phys 90:1752

    Article  Google Scholar 

  65. Handy NC, Amos RD, Gaw JF, Rice JE, Sirnandiras ES (1985) Chem Phys Lett 120:151

    Article  CAS  Google Scholar 

  66. Handy NC, Schaefer HF (1984) J Chem Phys 81:5031

    Article  CAS  Google Scholar 

  67. Gauss J (1992) Chem Phys Lett 191:614

    Article  CAS  Google Scholar 

  68. Maldonado A, Aucar G (2007) J Chem Phys 127:154115

    Article  Google Scholar 

  69. Liu W, Peng D (2006) J Chem Phys 125:044102

    Article  Google Scholar 

  70. Liu W, Peng D (2006) J Chem Phys 125:149901(E)

    Google Scholar 

  71. Peng D, Liu W, Xiao Y, Cheng L (2007) J Chem Phys 127:104106

    Article  Google Scholar 

  72. Wick GC (1948) Phys Rev 73:57

    Article  Google Scholar 

Download references

Acknowledgments

The research of this work was supported by grants from the National Natural Science Foundation of China (Project No. 21033001). W.L. is grateful to Prof. Dr. Ch. van Wüllen for the invitation and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Liu.

Additional information

Published as part of the special collection of articles celebrating the 50th anniversary of Theoretical Chemistry Accounts/Theoretica Chimica Acta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Sun, Q. & Liu, W. Fully relativistic theories and methods for NMR parameters. Theor Chem Acc 131, 1080 (2012). https://doi.org/10.1007/s00214-011-1080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-011-1080-z

Keywords

Navigation