Skip to main content
Log in

Choosing an atomic basis set for TD-DFT, SOPPA, ADC(2), CIS(D), CC2 and EOM-CCSD calculations of low-lying excited states of organic dyes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Aiming to pinpoint an atomic basis set providing accurate transition energies at a minimal computational cost, we investigate the evolution with basis set size of the energy of low-lying excited states in nine representative conjugated dyes with a wide panel of theoretical approaches, namely TD-DFT, SOPPA, ADC(2), CIS(D), CC2, EOM-CCSD, as well as several scaled opposite spin variants, namely SOS-CIS(D), SOS-CIS(D0) and SOS-ADC(2). At the exception of TD-DFT that displays the lowest basis set dependence, it turns out that the changes obtained when increasing the size of the basis set are rather independent of the selected wavefunction model, but strongly change according to the nature of the excited state considered. Reasonable compromises between accuracy and computational burden can be attained with 6-311+G(2d,p) that allows much faster calculations than the typical reference basis set, namely aug-cc-pVTZ, for an average loss of accuracy limited to ca. 0.02 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. González L, Escudero D, Serrano-Andrès L (2012) Chem Phys Chem 13:28

    Google Scholar 

  2. Andersson K, Malmqvist P, Roos BO (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  3. Buenker RJ, Peyerimhoff SD (1968) Theor Chim Acta 12:183

    Article  CAS  Google Scholar 

  4. Stanton JF, Bartlett RJ (1993) J Chem Phys 98:7029

    Article  CAS  Google Scholar 

  5. Kállay M, Gauss J (2004) J Chem Phys 121:9257

    Article  Google Scholar 

  6. Caricato M (2013) J Chem Phys 139:114103

    Article  Google Scholar 

  7. Schirmer J, Trofimov AB (2004) J Chem Phys 120:11449

    Article  CAS  Google Scholar 

  8. Hellweg A, Grün SA, Hättig C (2008) Phys Chem Chem Phys 10:4119

    Article  CAS  Google Scholar 

  9. Krauter CM, Pernpointner M, Dreuw A (2013) J Chem Phys 138:044107

    Article  Google Scholar 

  10. Nakatsuji H (1991) J Chem Phys 94:6716

    Article  CAS  Google Scholar 

  11. Nakatsuji H, Ehara M (1993) J Chem Phys 98:7179

    Article  CAS  Google Scholar 

  12. Ridley JE, Zerner M (1973) Theor Chim Acta 32:111

    Article  CAS  Google Scholar 

  13. Förner W (1992) Int J Quantum Chem 43:221

    Article  Google Scholar 

  14. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  15. Casida ME (1995) Time-dependent density-functional response theory for molecules (World Scientific, Singapore). Recent Adv Density Funct Methods 1:155–192

    Article  CAS  Google Scholar 

  16. Laurent AD, Adamo C, Jacquemin D (2014) Phys Chem Chem Phys 16:14334

    Article  CAS  Google Scholar 

  17. Laurent AD, Jacquemin D (2013) Int J Quantum Chem 113:2019

    Article  CAS  Google Scholar 

  18. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  19. Aquilante F, Malmqvist PÅ, Pedersen TB, Ghosh A, Roos BO (2008) J Chem Theory Comput 4(5):694

    Article  CAS  Google Scholar 

  20. Boström J, Delcey MG, Aquilante F, Serrano-Andrés L, Pedersen TB, Lindh R (2010) J Chem Theory Comput 6:747

    Article  Google Scholar 

  21. Epifanovsky E, Zuev D, Feng X, Khistyaev K, Shao Y, Krylov AI (2013) J Chem Phys 139:134105

    Article  Google Scholar 

  22. Christiansen O, Koch H, Jørgensen P (1995) Chem Phys Lett 243:409

    Article  CAS  Google Scholar 

  23. Head-Gordon M, Maurice D, Oumi M (1995) Chem Phys Lett 246:114

    Article  CAS  Google Scholar 

  24. Rhee YM, Head-Gordon M (2007) J Phys Chem A 111:5314

    Article  CAS  Google Scholar 

  25. Plasser F, Barbatti M, Aquino AJA, Lischka H (2009) J Phys Chem A 113:8490

    Article  CAS  Google Scholar 

  26. Quartarolo AD, Sicilia E, Russo N (2009) J Chem Theory Comput 5:1849

    Article  CAS  Google Scholar 

  27. Aittala PJ, Cramariuc O, Hukka TI (2010) J Chem Theory Comput 6:805

    Article  CAS  Google Scholar 

  28. Plötner J, Tozer DJ, Dreuw A (2010) J Chem Theory Comput 6:2315

    Article  Google Scholar 

  29. Goerigk L, Grimme S (2010) J Chem Phys 132:184103

    Article  Google Scholar 

  30. Guthmuller J (2011) J Chem Theory Comput 7:1082

    Article  CAS  Google Scholar 

  31. Quartarolo AD, Russo N (2011) J Chem Theory Comput 7:1073

    Article  CAS  Google Scholar 

  32. Send R, Kühn M, Furche F (2011) J Chem Theory Comput 7:2376

    Article  CAS  Google Scholar 

  33. Cui G, Lan Z, Thiel W (2012) J Am Chem Soc 134:1662

    Article  CAS  Google Scholar 

  34. Friese DH, Hattig C, Ruud K (2012) Phys Chem Chem Phys 14:1175

    Article  CAS  Google Scholar 

  35. Bousquet D, Fukuda R, Maitarad P, Jacquemin D, Ciofini I, Adamo C, Ehara M (2013) J Chem Theory Comput 9:2368

    Article  CAS  Google Scholar 

  36. Ehara M, Fukuda R, Adamo C, Ciofini I (2013) J Comput Chem 34:2498

    Article  CAS  Google Scholar 

  37. Winter NOC, Graf NK, Leutwyler S, Hattig C (2013) Phys Chem Chem Phys 15:6623

    Article  CAS  Google Scholar 

  38. Daengngern R, Kungwan N (2014) Chem Phys Lett 609:147

    Article  CAS  Google Scholar 

  39. Li H, Nieman R, Aquino AJA, Lischka H, Tretiak S (2014) J Chem Theory Comput 10:3280

    Article  CAS  Google Scholar 

  40. Grimme S, Izgorodina EI (2004) Chem Phys 305:223

    Article  CAS  Google Scholar 

  41. Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) J Chem Phys 128:134110

    Article  Google Scholar 

  42. Silva-Junior MR, Sauer SPA, Schreiber M, Thiel W (2010) Mol Phys 108:453

    Article  CAS  Google Scholar 

  43. Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2010) J Chem Phys 133:174318

    Article  Google Scholar 

  44. Aquino AJA, Lischka H, Hattig C (2005) J Phys Chem A 109:3201

    Article  CAS  Google Scholar 

  45. Aquino AJA, Nachtigallova D, Hobza P, Truhlar DG, Hattig C, Lischka H (2011) J Comput Chem 32:1217

    Article  CAS  Google Scholar 

  46. Panda AN, Plasse F, Aquino AJA, Burghardt I, Lischka H (2013) J Phys Chem A 117:2181

    Article  CAS  Google Scholar 

  47. Starcke JH, Wormit M, Dreuw A (2009) J Chem Phys 131:144311

    Article  Google Scholar 

  48. Starcke JH, Wormit M, Dreuw A (2009) J Chem Phys 130:024104

    Article  Google Scholar 

  49. Mewes JM, You ZQ, Wormit M, Kriesche T, Herbert JM, Dreuw A (2015) J Phys Chem A. doi:10.1021/jp511163y

    Google Scholar 

  50. Kerkines ISK, Petsalakis ID, Theodorakopoulos G, Klopper W (2009) J Chem Phys 131:224315

    Article  Google Scholar 

  51. Corral I, González L (2008) J Comput Chem 29:1982

    Article  CAS  Google Scholar 

  52. Pino GA, Oldani AN, Marceca E, Fujii M, Ishiuchi SI, Miyazaki M, Broquier M, Dedonder C, Jouvet C (2010) J Chem Phys 133:124313

    Article  CAS  Google Scholar 

  53. Fliegl H, Köhn A, Hättig C, Ahlrichs R (2003) J Am Chem Soc 125:9821

    Article  CAS  Google Scholar 

  54. Epifanovsky E, Polyakov I, Grigorenko B, Nemukhin A, Krylov AI (2009) J Chem Theory Comput 5:1895

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision D.01 (2009). Gaussian Inc, Wallingford

  56. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  57. Head-Gordon M, Oumi M, Maurice D (1999) Mol Phys 96:593

    CAS  Google Scholar 

  58. Krylov AI, Gill PM (2013) Wiley Int Rev Comput Mol Sci 3:317

    Article  CAS  Google Scholar 

  59. Shao Y, Gan Z, Epifanovsky E, Gilbert AT, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kuś T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock HL, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang CM, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio RA, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MW, Harbach PH, Hauser AW, Hohenstein EG, Holden ZC, Jagau TC, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao SP, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su YC, Thom AJ, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You ZQ, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GK, Chipman DM, Cramer CJ, Goddard WA, Gordon MS, Hehre WJ, Klamt A, Schaefer HF, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai JD, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu CP, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PM, Head-Gordon M (2015) Mol Phys 113(2):184

    Article  CAS  Google Scholar 

  60. TURBOMOLE v6.6 (2014) A development of university of karlsruhe and forschungszentrum karlsruhe gmbh, 1989–2007, TURBOMOLE GmbH, since 2007. Available from http://www.turbomole.com

  61. Nielsen ES, Jorgensen P, Oddershede J (1980) J Chem Phys 73:6238

    Article  CAS  Google Scholar 

  62. Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenæs E, Høst S, Høyvik IM, Iozzi MF, Jansík B, Jensen HJA, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjærgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæs OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, de Merás AS, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Ågren H (2014) Wiley Int Rev Comput Mol Sci 4(3):269

    Article  CAS  Google Scholar 

  63. Chibani S, Le Guennic B, Charaf-Eddin A, Maury O, Andraud C, Jacquemin D (2012) J Chem Theory Comput 8:3303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to dedicate this work to Dr. M. Wormit who very kindly helped us for the ADC calculations. They also acknowledge A. Dreuw, D. Escudero and C. Sergentu for fruitful discussions. D. J. acknowledges the European Research Council (ERC) and the Région des Pays de la Loire for financial support in the framework of a Starting Grant (Marches-278845) and a recrutement sur poste stratégique, respectively. This research used resources of (1) the GENCI-CINES/IDRIS, (2) CCIPL (Centre de Calcul Intensif des Pays de Loire) and (3) a local Troy cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Jacquemin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2015_1676_MOESM1_ESM.pdf

Supporting Information: Dunning BS tests for 4 and figures for all methods, basis sets and molecules. (420KB) 214_2015_1676_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent, A.D., Blondel, A. & Jacquemin, D. Choosing an atomic basis set for TD-DFT, SOPPA, ADC(2), CIS(D), CC2 and EOM-CCSD calculations of low-lying excited states of organic dyes. Theor Chem Acc 134, 76 (2015). https://doi.org/10.1007/s00214-015-1676-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1676-9

Keywords

Navigation