Skip to main content
Log in

Structural characteristics and photoinduced carrier behaviors of the mixed-phase BiVO4: a first-principles theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Nowadays, it is an attractive strategy to promote the efficiency of photocatalytic reactions by introducing the heterojunctions. Bismuth vanadate (BiVO4), one of the promising non-titania-based visible light-driven semiconductor photocatalysts, possesses three different crystal phases which can transform from one phase to another under appropriate conditions. The heterophase junction built by the monoclinic scheelite (s-m) and tetragonal zircon (z-t) phase BiVO4 has been demonstrated to have high photocatalytic activity than the single-phase BiVO4. Here we presented a step-by-step protocol based on the first-principles density functional theory calculations to explore the origin of high photocatalytic activity existed in BiVO4 heterojunction. The mixed-phase geometrical structures, density of states, electrostatic potential, electron localization function and band offsets of optimal interface have been calculated. For the heterojunction, the calculated valence band maximum and conduction band minimum of z-t BiVO4 are 0.29 and 0.32 eV above those of s-m BiVO4, respectively, indicating that the presence of interface in monoclinic/tetragonal heterophase provides a spatial condition for charge carrier separation and promotes the separation of photoinduced electron–hole pairs. Further calculations reveal that the direction of electron migration across the phase boundary is from z-t to s-m, consistent with the experimental observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJ, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648

    Article  CAS  Google Scholar 

  2. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  CAS  Google Scholar 

  3. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  Google Scholar 

  4. Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440(7082):295–295

    Article  CAS  Google Scholar 

  5. Fujishima A, Honda K (1972) Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 238(5385):37–38

    Article  CAS  Google Scholar 

  6. Akimov AV, Neukirch AJ, Prezhdo OV (2013) Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem Rev 113(6):4496–4565

    Article  CAS  Google Scholar 

  7. Qi T, Curnan MT, Kim S, Bennett JW, Grinberg I, Rappe AM (2011) First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB′O3 solid solutions. Phys Rev B 84(24):245206

    Article  Google Scholar 

  8. Qi T, Grinberg I, Rappe AM (2011) Band-gap engineering via local environment in complex oxides. Phys Rev B 83(22):224108

    Article  Google Scholar 

  9. Jiang J, Zhang X, Sun P, Zhang L (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115(42):20555–20564

    Article  CAS  Google Scholar 

  10. Paola AD, Bellardita M, Ceccato R, Palmisano L, Parrino F (2009) Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water. J Phys Chem C 113(34):15166–15174

    Article  Google Scholar 

  11. Ohno T, Sarukawa K, Matsumura M (2001) Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in hf solution. J Phys Chem B 105(12):2417–2420

    Article  CAS  Google Scholar 

  12. Ju MG, Sun G, Wang J, Meng Q, Liang W (2014) Origin of high photocatalytic properties in the mixed-phase TiO2: a first-principles theoretical study. ACS Appl Mater Interface 6(15):12885–12892

    Article  CAS  Google Scholar 

  13. Roth R, Waring JL (1963) JL Waring. Am Mineral 48:1348

    CAS  Google Scholar 

  14. Bierlein J, Sleight A (1975) Ferroelasticity in BiVO4. Solid State Commun 16(1):69–70

    Article  CAS  Google Scholar 

  15. Zhang X, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater Chem Phys 103(1):162–167

    Article  CAS  Google Scholar 

  16. Li C, Pang G, Sun S, Feng S (2012) Phase transition of BiVO4 nanoparticles in molten salt and the enhancement of visible-light photocatalytic activity. J Nanopart Res 12(8):3069C3075

    Google Scholar 

  17. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C (2013) Spatial separation of photogenerated electrons and holes among 010 and 110 crystal facets of BiVO4. Nat Commun 4:1432

    Article  Google Scholar 

  18. Fan H, Jiang T, Li H, Wang D, Wang L, Zhai J, He D, Wang P, Xie T (2012) Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J Phys Chem C 116(3):2425–2430

    Article  CAS  Google Scholar 

  19. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558

    Article  CAS  Google Scholar 

  20. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  22. Heyd J, Scuseria GE (2004) Assessment and validation of a screened coulomb hybrid density functional. J Chem Phys 120(16):7274–7280

    Article  CAS  Google Scholar 

  23. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118(18):8207–8215

    Article  CAS  Google Scholar 

  24. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121(49):11459–11467

    Article  CAS  Google Scholar 

  25. Sayama K, Nomura A, Zou Z, Abe R, Abe Y, Arakawa H (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 23:2908–2909

    Article  Google Scholar 

  26. Baldereschi A, Baroni S, Resta R (1988) Band offsets in lattice-matched heterojunctions: a model and first-principles calculations for GaAs/AlAs. Phys Rev Lett 61(6):734

    Article  CAS  Google Scholar 

  27. Fan Y, Zhao M, He T, Wang Z, Zhang X, Xi Z, Zhang H, Hou K, Liu X, Xia Y (2010) Electronic properties of BN/C nanotube heterostructures. J Appl Phys 107(9):094304

    Article  Google Scholar 

  28. Wang Z, Zhao M, Wang X, Xi Y, He X, Liu X, Yan S (2012) Hybrid density functional study of band alignment in ZnO–GaN and ZnO–(Ga1-xZnx)(N1−xOx)–GaN heterostructures. Phys Chem Chem Phys 14(45):15693–15698

    Article  CAS  Google Scholar 

  29. D’Amico NR, Cantele G, Ninno D (2012) First principles calculations of the band offset at SrTiO3–TiO2 interfaces. Appl Phys Lett 101(14):141606

    Article  Google Scholar 

  30. Fan Y, Hou K, Wang Z, He T, Zhang X, Zhang H, Dong J, Liu X, Zhao M (2011) Theoretical insights into the built-in electric field and band offsets of BN/C heterostructured zigzag nanotubes. J Phys D Appl Phys 44(9):095405

    Article  Google Scholar 

  31. Sleight A, Chen HY, Ferretti A, Cox D (1979) Crystal growth and structure of BiVO4. Mater Res Bull 14(12):1571–1581

    Article  CAS  Google Scholar 

  32. Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42(6):2321–2337

    Article  CAS  Google Scholar 

  33. Dreyer G, Tillmanns E (1981) Dreyerite-natural, tetragonal bismuth vanadate from hirschhorn-pfalz. Neues Jb Miner Monat 4:151–154

    Google Scholar 

  34. Walsh A, Yan Y, Huda MN, Al-Jassim MM, Wei SH (2009) Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem Mater 21(3):547–551

    Article  CAS  Google Scholar 

  35. Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13(12):4624–4628

    Article  CAS  Google Scholar 

  36. Yang J, Wang D, Zhou X, Li C (2013) A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chem Eur J 19(4):1320–1326

    Article  CAS  Google Scholar 

  37. Payne D, Robinson M, Egdell R, Walsh A, McNulty J, Smith K, Piper L (2011) The nature of electron lone pairs in BiVO4. Appl Phys Lett 98(21):212110

    Article  Google Scholar 

  38. Ju MG, Wang X, Liang W, Zhao Y, Li C (2014) Tuning the energy band-gap of crystalline gallium oxide to enhance photocatalytic water splitting: mixed-phase junctions. J Mater Chem A 2(40):17005–17014

    Article  CAS  Google Scholar 

  39. Conesa JC (2012) Modeling with hybrid density functional theory the electronic band alignment at the zinc oxide–anatase interface. J Phys Chem C 116(35):18884–18890

    Article  CAS  Google Scholar 

  40. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276

    Article  CAS  Google Scholar 

  41. Finnis M, Lozovoi A, Alavi A (2005) The oxidation of NiAl: what can we learn from ab initio calculations? Annu Rev Mater Res 35:167–207

    Article  CAS  Google Scholar 

  42. Zhang S, Northrup JE (1991) Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys Rev Lett 67(17):2339

    Article  CAS  Google Scholar 

  43. Wang W, Chen S, Yang PX, Duan CG, Wang LW (2013) Si: WO3 heterostructure for Z-scheme water splitting: an ab initio study. J Mater Chem A 1(4):1078–1085

    Article  CAS  Google Scholar 

  44. Batyrev IG, Alavi A, Finnis MW (2000) Equilibrium and adhesion of Nb/sapphire: the effect of oxygen partial pressure. Phys Rev B 62(7):4698

    Article  CAS  Google Scholar 

  45. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92(9):5397–5403

    Article  CAS  Google Scholar 

  46. Feng HJ, Paudel TR, Tsymbal EY, Zeng XC (2015) Tunable optical properties and charge separation in CH3NH3SnxPb1−xI3/TiO2 based planar perovskites cells. J Am Chem Soc 137(25):8227–8236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from National Science Foundation of China (Grant Nos. 21290193, 21373163 and 21573177) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanZhen Liang.

Additional information

Published as part of the special collection of articles “Health & Energy from the Sun”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ju, MG. & Liang, W. Structural characteristics and photoinduced carrier behaviors of the mixed-phase BiVO4: a first-principles theoretical study. Theor Chem Acc 135, 134 (2016). https://doi.org/10.1007/s00214-016-1893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1893-x

Keywords

Navigation