Skip to main content

Advertisement

Log in

Insights into the interactions of biomolecules with small gold clusters: a theoretical study from a DFTB perspective

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this study, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption energies and geometries. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of proline interacting with gold cluster. The frontier orbitals energies suggest that in proline–gold cluster complex, the proline molecule can only act as an electron donor and the gold cluster as acceptor. The analysis of the electronic properties for arginine, arginine dipeptide, and TAT peptide which underline the role on the interaction of the s-like H states with the d-like Au states produces both bonding and anti-bonding occupied orbitals, and the process is well described by a model for the interaction of localized orbitals with narrow-band dispersive electron states. The bonding orbitals well below the metal Fermi level contribute to the adsorption of arginine, arginine dipeptide, and TAT peptide on gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Love JC, Estroffi LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103

    Article  CAS  Google Scholar 

  2. Hakkinem H (2012) Nat Chem 4:443

    Article  Google Scholar 

  3. Murton SM, Silverstein DW, Jensen L (2011) Chem Rev 111:3962

    Article  Google Scholar 

  4. Harnta M (1997) Catal Today 36:153

    Article  Google Scholar 

  5. Gorin D, Sherry B, Toste FD (2008) Chem Rev 108:3351

    Article  CAS  Google Scholar 

  6. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Br J Radiol 79(939):248–253

    Article  CAS  Google Scholar 

  7. Kennedy LC, Bickford LR, Lewinski NA, Coughling AJ, Hu Y, Day ES, West JL, Drezek RA (2011) Small 7:169

    Article  CAS  Google Scholar 

  8. Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M (2010) Nanotechnology 21:055103

    Article  Google Scholar 

  9. Qian X, Peng X, Ansari DO, Yin-Goen Q, Chen GZ, Yang L, Young AN, Wang MD, Nie S (2008) Nat Biotechnol 26:83

    Article  CAS  Google Scholar 

  10. Arvizo R, Bhattacharya R, Mukherjee P (2010) Expert Opin Drug Deliv 7(6):753–763

    Article  CAS  Google Scholar 

  11. Boisselier E, Astruc D (2009) Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  12. Eltsner M (2006) Theor Chem Acc 116:316–325

    Article  Google Scholar 

  13. Duarte H, Heine T, Seifert G (2005) Theor Chem Acc 114:68–75

    Article  CAS  Google Scholar 

  14. van Mourik T, Hogan SWL (2016) Struct Chem 27:145

    Article  Google Scholar 

  15. Fihey A, Hettich C, Touzeon J, Maucel FC, Perrier A, Kohler C, Aradi B, Frauenheim T (2015) J Comput Chem 36:2075–2087

    Article  CAS  Google Scholar 

  16. Elstner M (2007) J Phys Chem A 111:5614

    Article  CAS  Google Scholar 

  17. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  18. Porezag D, Frauenheim T, Kohler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947

    Article  CAS  Google Scholar 

  19. Elstner M, Frauenheim T, Suhai S (2003) J Mol Struct Theochem 632:29

    Article  CAS  Google Scholar 

  20. Seifert G (2007) J Phys Chem A 111:5609

    Article  CAS  Google Scholar 

  21. Oliveira AF, Seifert G, Heine T, Duarte HA (2009) J Braz Chem Soc 20(7):1193–1205

    Article  CAS  Google Scholar 

  22. Slater JC, Kostner GF (1954) Phys Rev 94:1498

    Article  CAS  Google Scholar 

  23. Koskinen P, Makinen V (2009) Comput Mater Sci 47:237–253

    Article  CAS  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K, VMD-Visual Molecular Dynamics (1996) J Molec Graphics 14(1):33–38

    Article  CAS  Google Scholar 

  25. Aradi B, Hourahine B, Frauenheim T (2007) J Phys Chem A 111:5678

    Article  CAS  Google Scholar 

  26. Zhechkov L, Heine Th, Patchkovskii S, Seifert G, Duarte HA (2005) J Chem Theory Comput 32(1):841–847

    Article  Google Scholar 

  27. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 32(114):10024–10035

    Article  Google Scholar 

  28. Kruger D, Fuchs H, Rousseau D, Marx D, Parrinello M (2002) Phys Rev 89:186402

    Google Scholar 

  29. Rai S, Kumar NVS, Singh H (2012) Bull Mater Sci 35(3):291–295

    Article  CAS  Google Scholar 

  30. Pakiari AH, Jamshidi Z (2007) J Phys Chem A 111:4391

    Article  CAS  Google Scholar 

  31. Janak JF (1978) Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

  32. Perdew JP, Zunger A (1981) Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  33. Dennison SR et al (2007) Biochem Biophy Res Commun 363:178

    Article  CAS  Google Scholar 

  34. Futaki S (2005) Adv Drug Deliv Rev 57:547

    Article  CAS  Google Scholar 

  35. Saha S, Roy RK, Ayers PW (2009) Int J Quant Chem 109:1790–1806

    Article  CAS  Google Scholar 

  36. Hammer B, Nørskov JK (1997) In Theory of Adorption and Surface Reactions. In: Lambert RM, Pacchioni G (eds) Chemisorption and reactivity of supported clusters and thin films. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  37. Li W, Kotsis K, Manzhos S (2016) Phys Chem Chem Phys 18:19902–19917

    Article  CAS  Google Scholar 

  38. Di Felice R, Selloni A, Molinari E (2003) J Phys Chem B 107:1151–1156

    Article  Google Scholar 

  39. Martyna GJ, Klein ML, Tuckerman M (1992) J Chem Phys 97:2635–2643

    Article  Google Scholar 

  40. Frenkel S (2002) Molecular simulation—from algorithms to applications (W.C. Wang, Trans.). Chemical Industry Press, Beijing

    Google Scholar 

  41. Shi WY, Ding C, Yan JL, Han XY, Lv ZM, Lei W, Xia MZ, Wang FY (2012) Desalination 291:8–14

    Article  CAS  Google Scholar 

  42. Ying-xue J, Feng-he W, Lun-chao D, Fan Z, Xue-dong G (2013) Appl Surf Sci 285:403–408

    Article  Google Scholar 

  43. Domínguez-Castro F, Guzman Y (2017) Novo-Fernandez. Comput Theor Chem 1102:30–37

    Article  Google Scholar 

  44. Xue Y, Datta S, Ratner MA (2001) J Chem Phys 115:4292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education (MES) of the Republic of Cuba as part of a scientific project of Higher Institute for Technologies and Applied Sciences (InSTEC). We would also like to thank Advanced Computational Team at Higher Institute of Technologies and Applied Sciences for the support provided during the realization of this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Adrian Domínguez-Castro or Fernando Guzmán.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Castro, A., Hernández, D. & Guzmán, F. Insights into the interactions of biomolecules with small gold clusters: a theoretical study from a DFTB perspective. Theor Chem Acc 136, 84 (2017). https://doi.org/10.1007/s00214-017-2118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2118-7

Keywords

Navigation