Skip to main content
Log in

Bond orders in metalloporphyrins

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A new concept of bond order density of shared electron pairs is introduced to study the electronic structure in molecules. This BODSEP analysis is applied to the distortion of benzene toward its building blocks (acetylenes), metalloporphyrins and two recent examples from the literature. The S12g/TZ2P results show the gradual disappearance of the bonds while distorting benzene and strengthening the bonds in acetylene to reach a final triple bond value. A large range of bond orders are observed for the metalloporphyrins, which are consistent with aromaticity indices from the literature [Can. J. Chem. 2009, 87, 1063]; with an ideal value of 1.5 for aromatic molecules (because of resonance), it suggests that (BODSEP) bond orders might be used for aromaticity measures. Finally, the delocalized bonds in porphyrins are localizing in the corrphycenes, and bond order strengths for different spin states of dipyrrolonaphthyridinedione have been assigned, which differ from the original description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shaik S (2016) Chemistry as a game of molecular construction: the bond-click way. Wiley, Hoboken

    Google Scholar 

  2. Steiner S, Wolf J, Glatzel S, Andreou A, Granda JM, Keenan G, Hinkley T, Aragon-Camarasa G, Kitson PJ, Angelone D, Cronin L (2019) Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363(6423):2211. https://doi.org/10.1126/science.aav2211

    Article  CAS  Google Scholar 

  3. García-Simón C, Costas M, Ribas X (2016) Metallosupramolecular receptors for fullerene binding and release. Chem Soc Rev 45:40–62. https://doi.org/10.1039/C5CS00315F

    Article  PubMed  Google Scholar 

  4. García-Simón C, Garcia-Borràs M, Gómez L, Parella T, Osuna S, Juanhuix J, Imaz I, Maspoch D, Costas M, Ribas X (2014) Sponge-like molecular cage for purification of fullerenes. Nat Commun 5:5557. https://doi.org/10.1038/ncomms6557

    Article  CAS  Google Scholar 

  5. Lozano D, Álvarez-Yebra R, López-Coll R, Lledó A (2019) A flexible self-folding receptor for coronene. Chem Sci 10:10351–10355. https://doi.org/10.1039/C9SC03158H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Romero-Rivera A, Garcia-Borràs M, Osuna S (2017) Computational tools for the evaluation of laboratory-engineered biocatalysts. Chem Commun 53:284–297. https://doi.org/10.1039/C6CC06055B

    Article  CAS  Google Scholar 

  7. Maria-Solano MA, Iglesias-Fernández J, Osuna S (2019) Deciphering the allosterically driven conformational ensemble in tryptophan synthase evolution. J Am Chem Soc 141:13049–13056. https://doi.org/10.1021/jacs.9b03646

    Article  CAS  PubMed  Google Scholar 

  8. Serrano-Plana J, Oloo WN, Acosta-Rueda L, Meier KK, Verdejo B, Garcia-Espana E, Basallote MG, Munck E, Que L Jr, Company A, Costas M (2015) Trapping a highly reactive nonheme iron intermediate that oxygenates Strong C–H bonds with stereoretention. J Am Chem Soc 137(50):15833–15842. https://doi.org/10.1021/jacs.5b09904

    Article  CAS  PubMed  Google Scholar 

  9. Dantignana V, Serrano-Plana J, Draksharapu A, Magallón C, Banerjee S, Fan R, Gamba I, Guo Y, Que L, Costas M, Company A (2019) Spectroscopic and reactivity comparisons between nonheme oxoiron(IV) and oxoiron(V) species bearing the same ancillary ligand. J Am Chem Soc 141:15078–15091. https://doi.org/10.1021/jacs.9b05758

    Article  CAS  PubMed  Google Scholar 

  10. Toropov AA, Carbó-Dorca R, Toropova AP (2018) Index of Ideality of Correlation: new possibilities to validate QSAR: a case study. Struct Chem 29:33–38. https://doi.org/10.1007/s11224-017-0997-9

    Article  CAS  Google Scholar 

  11. Barroso JM, Besalú E (2005) Design of experiments applied to QSAR: ranking a set of compounds and establishing a statistical significance test. J Mol Struct (THEOCHEM) 727:89–96. https://doi.org/10.1016/j.theochem.2005.02.051

    Article  CAS  Google Scholar 

  12. Besalú E, Gironés X, Amat L, Carbó-Dorca R (2002) Molecular quantum similarity and the fundamentals of QSAR. Acc Chem Res 35:289–295. https://doi.org/10.1021/ar010048x

    Article  CAS  PubMed  Google Scholar 

  13. Carbó-Dorca R (2018) Toward a universal quantum QSPR operator. Int J Quantum Chem 118:e25602. https://doi.org/10.1002/qua.25602

    Article  CAS  Google Scholar 

  14. Carbó-Dorca R, Damme SV (2007) Solutions to the Quantum QSPR problem in molecular spaces. Theor Chem Acc 118:673–679. https://doi.org/10.1007/s00214-007-0352-0

    Article  CAS  Google Scholar 

  15. Carbó-Dorca R, Gironés X (2005) Foundation of quantum similarity measures and their relationship to QSPR: density function structure, approximations, and application examples. Int J Quantum Chem 101:8–20. https://doi.org/10.1002/qua.20191

    Article  CAS  Google Scholar 

  16. Garcia-Borràs M, Osuna S, Swart M, Luis JM, Solà M (2013) Electrochemical control of the regioselectivity in the exohedral functionalization of C60. The role aromaticity. Chem Commun 49:1220–1222. https://doi.org/10.1039/C2CC38390J

    Article  Google Scholar 

  17. Ortiz de Montellano PR, De Voss JJ (2002) Oxidizing species in the mechanism of cytochrome P450. Nat Prod Rep 19:477–493. https://doi.org/10.1039/B101297P

    Article  PubMed  Google Scholar 

  18. Osuna S, Swart M, Solà M (2011) The reactivity of endohedral fullerenes. What can be learnt from computational studies? Phys Chem Chem Phys 13(9):3585–3603. https://doi.org/10.1039/c0cp01594f

    Article  CAS  PubMed  Google Scholar 

  19. Feixas F, Solà M, Swart M (2009) Chemical bonding and aromaticity in metalloporphyrins(1,2). Can J Chem Revue Canadienne De Chimie 87(7):1063–1073. https://doi.org/10.1139/v09-037

    Article  CAS  Google Scholar 

  20. Swart M (2007) Metal-ligand bonding in metallocenes: differentiation between spin state, electrostatic and covalent bonding. Inorg Chim Acta 360(1):179–189. https://doi.org/10.1016/j.ica.2006.07.073

    Article  CAS  Google Scholar 

  21. Rosa A, Ricciardi G, Baerends EJ (2006) Synergism of porphyrin-core saddling and twisting of meso-Aryl substituents. J Phys Chem A 110:5180–5190. https://doi.org/10.1021/jp060931i

    Article  CAS  PubMed  Google Scholar 

  22. Liptak MD, Wen X, Bren KL (2010) NMR and DFT investigation of heme ruffling: functional implications for cytochrome c. J Am Chem Soc 132:9753–9763. https://doi.org/10.1021/ja102098p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bren KL (2012) NMR spectroscopy of paramagnetic heme proteins. Curr Inorg Chem 2:273–291. https://doi.org/10.2174/1877944111202030273

    Article  CAS  Google Scholar 

  24. Bowman SE, Bren KL (2008) The chemistry and biochemistry of heme c: functional bases for covalent attachment. Nat Prod Rep 25(6):1118–1130. https://doi.org/10.1039/b717196j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Manni G, Alavi A (2018) Understanding the mechanism stabilizing intermediate spin states in Fe(II)-Porphyrin. J Phys Chem A 122:4935–4947. https://doi.org/10.1021/acs.jpca.7b12710

    Article  CAS  PubMed  Google Scholar 

  26. Mayer I (1983) Charge, bond order and valence in the ab initio SCF theory. Chem Phys Lett 97:270–274. https://doi.org/10.1016/0009-2614(83)80005-0

    Article  CAS  Google Scholar 

  27. Gopinathan MS, Jug K (1983) Valency. I. A quantum chemical definition and properties. Theor Chim Acta 63:497–509. https://doi.org/10.1007/BF00552652

    Article  CAS  Google Scholar 

  28. Nalewajski RF, Mrozek J (1994) Modified valence indices from the two-particle density matrix. Int J Quantum Chem 51(4):187–200. https://doi.org/10.1002/qua.560510403

    Article  CAS  Google Scholar 

  29. Michalak A, DeKock RL, Ziegler T (2008) Bond multiplicity in transition-metal complexes: applications of two-electron valence indices. J Phys Chem A 112:7256–7263. https://doi.org/10.1021/jp800139g

    Article  CAS  PubMed  Google Scholar 

  30. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3):1083–1096. https://doi.org/10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  31. Weinhold F, Landis CR, Glendening ED (2016) What is NBO analysis and how is it useful? Int Rev Phys Chem 35(3):399–440. https://doi.org/10.1080/0144235X.2016.1192262

    Article  CAS  Google Scholar 

  32. Bridgeman AJ, Cavigliasso G, Ireland LR, Rothery J (2001) The Mayer bond order as a tool in inorganic chemistry. J Chem Soc Dalton Trans 14:2095–2108. https://doi.org/10.1039/B102094N

    Article  Google Scholar 

  33. Mayer I (2007) Bond order and valence indices: a personal account. J Comput Chem 28(1):204–221. https://doi.org/10.1002/jcc.20494

    Article  CAS  PubMed  Google Scholar 

  34. Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham density functional theory: Predicting and understanding chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry, vol 15. Reviews in Computational Chemistry. Wiley-VCH, New York, pp 1–86. https://doi.org/10.1002/9780470125922.ch1

    Chapter  Google Scholar 

  35. Yagi A, Shinokubo H (2020) Meso-diazacorrphycenes: neighboring effect of two nitrogen atoms. Chem A Eur J 26(37):8210–8213. https://doi.org/10.1002/chem.202002053

    Article  CAS  Google Scholar 

  36. Wang L, Lin L, Yang J, Wu Y, Wang H, Zhu J, Yao J, Fu H (2020) Singlet fission in a pyrrole-fused cross-conjugated skeleton with adaptive aromaticity. J Am Chem Soc 142(23):10235–10239. https://doi.org/10.1021/jacs.0c00089

    Article  CAS  PubMed  Google Scholar 

  37. Baerends EJ, Ziegler T, Atkins AJ, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Chulhai DV, Deng L, Dickson RM, Dieterich JM, Ellis DE, Faassen Mv, Fan L, Fischer TH, Fonseca Guerra C, Franchini M, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, Heine T, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Peeples CA, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Rüger R, Schipper PRT, van Schoot H, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2016) ADF2016. ADF2016.01, ADF2016.01 edn. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam

  38. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967. https://doi.org/10.1002/jcc.1056

    Article  Google Scholar 

  39. Swart M, Bickelhaupt FM (2008) QUILD: QUantum-regions interconnected by local descriptions. J Comput Chem 29(5):724–734. https://doi.org/10.1002/jcc.20834

    Article  CAS  PubMed  Google Scholar 

  40. van Lenthe E, Baerends EJ (2003) optimized slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156. https://doi.org/10.1002/jcc.10255

    Article  CAS  PubMed  Google Scholar 

  41. Chong DP, van Lenthe E, van Gisbergen SJA, Baerends EJ (2004) Even-tempered Slater-type orbitals revisited: from hydrogen to krypton. J Comput Chem 25:1030–1036. https://doi.org/10.1002/jcc.20030

    Article  CAS  PubMed  Google Scholar 

  42. Swart M, Snijders JG (2003) Accuracy of geometries: influence of basis set, exchange-correlation potential, inclusion of core electrons, and relativistic corrections. Theor Chem Acc 110(1):34–41. https://doi.org/10.1007/s00214-003-0443-5

    Article  CAS  Google Scholar 

  43. Swart M (2013) A new family of hybrid density functionals. Chem Phys Lett 580:166–171. https://doi.org/10.1016/j.cplett.2013.06.045

    Article  CAS  Google Scholar 

  44. Swart M, Gruden M (2016) Spinning around in transition-metal chemistry. Acc Chem Res 49:2690–2697. https://doi.org/10.1021/acs.accounts.6b00271

    Article  CAS  PubMed  Google Scholar 

  45. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805. https://doi.org/10.1039/P29930000799

    Article  Google Scholar 

  46. Swart M, Rösler E, Bickelhaupt FM (2007) Proton Affinities in Water of Maingroup-Element Hydrides. Effects of Hydration and Methyl Substitution. Eur. J Inorg Chem 2007(23):3646–3654. https://doi.org/10.1002/ejic.200700228

    Article  CAS  Google Scholar 

  47. van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610. https://doi.org/10.1063/1.466059

    Article  Google Scholar 

  48. Banerjee S, Draksharapu A, Crossland PM, Fan R, Guo Y, Swart M, Que L Jr (2020) Sc3+-Promoted O–O Bond Cleavage of a (μ-1,2-Peroxo)diiron(III) Species Formed from an Iron(II) Precursor and O2 to Generate a Complex with an FeIV2(μ-O)2 Core. J Am Chem Soc 142:4285–4297. https://doi.org/10.1021/jacs.9b12081

    Article  CAS  PubMed  Google Scholar 

  49. Liao M-S, Scheiner S (2002) Electronic structure and bonding in metal porphyrins, metal=Fe Co, Ni, Cu, Zn. J Chem Phys 117:205–219. https://doi.org/10.1063/1.1480872

    Article  CAS  Google Scholar 

  50. Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13(36):3839–3842. https://doi.org/10.1016/S0040-4039(01)94175-9

    Article  Google Scholar 

  51. Matito E, Poater J, Solà M, Duran M, Salvador P (2005) Comparison of the AIM delocalization index and the mayer and fuzzy atom bond orders. J Phys Chem A 109(43):9904–9910. https://doi.org/10.1021/jp0538464

    Article  CAS  PubMed  Google Scholar 

  52. Matito E, Salvador P, Duran M, Solà M (2006) Aromaticity measures from fuzzy-atom bond orders (FBO). The aromatic fluctuation (FLU) and the para-delocalization (PDI) indexes. J Phys Chem A 110(15):5108–5113. https://doi.org/10.1021/jp057387i

    Article  CAS  PubMed  Google Scholar 

  53. Feixas F, Matito E, Poater J, Solà M (2015) Quantifying aromaticity with electron delocalisation measures. Chem Soc Rev 44(18):6434–6451. https://doi.org/10.1039/C5CS00066A

    Article  CAS  PubMed  Google Scholar 

  54. Bird CW (1985) A new aromaticity index and its application to five-membered ring heterocycles. Tetrahedron 41(7):1409–1414. https://doi.org/10.1016/S0040-4020(01)96543-3

    Article  CAS  Google Scholar 

  55. Jug K (1983) A bond order approach to ring current and aromaticity. J Org Chem 48(8):1344–1348. https://doi.org/10.1021/jo00156a038

    Article  CAS  Google Scholar 

  56. Aysin RR, Leites LA, Bukalov SS (2020) Aromaticity of 1-heterocyclopropenes containing an atom of group 14 or 4. Organometallics 39(14):2749–2762. https://doi.org/10.1021/acs.organomet.0c00351

    Article  CAS  Google Scholar 

  57. Ayub R, Bakouri OE, Jorner K, Solà M, Ottosson H (2017) Can baird’s and clar’s rules combined explain triplet state energies of polycyclic conjugated hydrocarbons with fused 4nπ- and (4n + 2)π-rings? J Org Chem 82(12):6327–6340. https://doi.org/10.1021/acs.joc.7b00906

    Article  CAS  PubMed  Google Scholar 

  58. @OttossonGroup (2020) T1 Baird-aromatic, how come? A recent JACS study (https://pubs.acs.org/doi/abs/10.1021/jacs.0c00089) claims Baird-aromaticity in T1, yet MCI(pi,beta)/MCI(pi,alpha) = 1.20 and resonance structure reveal Hückel-aromatic pyrrole rings. Spin distribution ≠ T1 Baird-aromatic and charges ≠ pyrrolinium rings. https://twitter.com/ottossongroup/status/1266744588041162752. Accessed August 25, 2020, 22.22h 2020

  59. Jorner K, Feixas F, Ayub R, Lindh R, Solà M, Ottosson H (2016) Analysis of a compound class with triplet states stabilized by potentially baird aromatic [10] annulenyl dicationic rings. Chem A Eur J 22(8):2793–2800. https://doi.org/10.1002/chem.201504924

    Article  CAS  Google Scholar 

  60. Swart M, van Duijnen PT, Snijders JG (2001) A charge analysis derived from an atomic multipole expansion. J Comput Chem 22(1):79–88. https://doi.org/10.1002/1096-987x(20010115)22:1<79:aid-jcc8>3.0.co;2-b

    Article  CAS  Google Scholar 

  61. @kjelljorner (2020) This paired-unpaired EDDB analysis is very interesting Dariusz, do you have a reference for that? I would believe that the following resonance structures are a good description of the system. https://twitter.com/kjelljorner/status/1266860701483708417. Accessed August 25, 2020, 22.27h 2020

Download references

Acknowledgements

MINECO (CTQ2014-59212-P, CTQ2015-70851-ERC, CTQ2017-87392-P), FEDER (UNGI10-4E-801) and the COST Association (CM1305, ECOSTBio) are gratefully thanked for financial support, CSUC for extensive computer time and SCM for a developer's license.

Funding

MINECO, COST, CSUC, SCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Swart.

Additional information

Dedicated to Ramon Carbó-Dorca on the occasion of his 80th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swart, M. Bond orders in metalloporphyrins. Theor Chem Acc 139, 160 (2020). https://doi.org/10.1007/s00214-020-02667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02667-z

Keywords

Navigation