Skip to main content
Log in

Individual cell migration analysis using fiber-optic bundles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we describe a novel optical fiber-based technology for analyzing cell migration. Cells were labeled with a membrane-bound fluorescent dye and distributed onto a polished optical fiber bundle. When a cell passes over one of the individual fibers in the bundle, the membrane-bound dye causes a large intensity increase, which stays for a given “residence time” until the cell departs from the fiber. Residence time increases significantly upon exposure to an antimigratory drug, indicating a decrease in cell migration. This approach provides a simple migration assay and does not require sophisticated tracking software. By using optical fiber bundles containing smaller individual fibers with higher spatial resolution, this approach was employed to develop a migration assay based on subcellular imaging. The subcellular imaging platform allows for rapid analysis of migratory potential, reducing experimental time from several hours in a standard assay to 5 min using this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2a–d
Fig. 3a–c

Similar content being viewed by others

References

  1. Price JT, Bonovich MT, Kohn EC (1997) Crit Rev Biochem Mol Biol 32:175–253

    Google Scholar 

  2. Bolognese A, Correale G, Manfra M, Lavecchia A, Mazzoni O, Novellino E, Barone V, Pani A, Tramontano E, La Colla P, Murgioni C, Serra I, Setzu G, Loddo R (2002) J Med Chem 45:5205–5216

    Google Scholar 

  3. Rosenberg B (1980) In: Sprio T (ed) Nucleic acid–metal ion interactions, vol 1. Wiley, New York, pp 1–29

  4. Boyden S (1962) J Exp Med 115:453–466

    Google Scholar 

  5. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Circulation 107:1322–1328

    Google Scholar 

  6. Magdalena J, Millard TH, Machesky LM (2003) J Cell Sci 116:743–756

    Google Scholar 

  7. Liao GJ, Nagasaki T, Gundersen GG (1995) J Cell Sci 108:3473–3483

    Google Scholar 

  8. Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Anal Chem 73:1240–1246

    Google Scholar 

  9. Wegener J, Keese CR, Giaever I (2000) Exp Cell Res 259:158–166

    Google Scholar 

  10. Deacon SW, Serpinskaya AS, Vaughan PS, Fanarraga ML, Vernos I, Vaughan KT, Gelfand VI (2003) J Cell Biol 160:297–301

    Article  CAS  PubMed  Google Scholar 

  11. Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM (1997) Exp Cell Res 235:305–313

    Article  CAS  PubMed  Google Scholar 

  12. Yousaf MN, Houseman BT, Mrksich M (2001) Angew Chem Int Edit 40:1093–1096

    Google Scholar 

  13. Chon JH, Vizena AD, Rock BM, Chaikof EL (1997) Anal Biochem 252:246–254

    Google Scholar 

  14. Fisher PR, Merkl R, Gerisch G (1989) J Cell Biol 108:973–984

    Google Scholar 

  15. Hoebeke J, Vannijen G, Debrabander M (1976) Biochem Biophys Res Commun 69:319–324

    Google Scholar 

  16. Debrabander MJ, Vandeveire RML, Aerts FEM, Borgers M, Janssen PAJ (1976) Cancer Res 36:905–916

    Google Scholar 

  17. Schliwa M, Honer B (1993) Trends Cell Biol 3:377–380

    Google Scholar 

  18. Vasiliev JM, Gelfand IM, Domnina LV, Ivanova OY, Komm SG, Olshevsk LV (1970) J Embryol Exp Morph 24:625–640

    Google Scholar 

  19. Goldman RD (1971) J Cell Biol 51:752–762

    Google Scholar 

  20. Terasaki M, Chen LB, Fujiwara K (1986) J Cell Biol 103:1557–1568

    Google Scholar 

  21. Heggeness MH, Simon M, Singer SJ (1978) P Natl Acad Sci USA 75:3863–3866

    Google Scholar 

  22. Collot M, Louvard D, Singer SJ (1984) P Natl Acad Sci USA Biol 81:788–792

    Google Scholar 

  23. Freshney R (1994) Culture of animal cells: a nanual of basic techniques. Wiley, New York

    Google Scholar 

  24. Gilchrest BA, Nemore RE, Maciag T (1980) Cell Biol Int Rep 4:1009–1016

    Google Scholar 

  25. Chigusa Y, Fujiwara K, Hattori Y, Matsuda Y (1986) Optoelectron-Devices 1:203–216

    Google Scholar 

  26. Mogi M, Yoshimura K (1989) P Soc Photo-Opt Inst 1067:172–181

    Google Scholar 

  27. Walt DR (1998) Acc Chem Res 31:267–278

    Google Scholar 

  28. Honig MG, Hume RI (1986) J Cell Biol 103:171–187

    Article  CAS  PubMed  Google Scholar 

  29. Parish CR (1999) Immunol Cell Biol 77:499–508

    Article  CAS  PubMed  Google Scholar 

  30. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Science 297:1183–1186

    Google Scholar 

  31. Mukherjee S, Soe TT, Maxfield FR (1999) J Cell Biol 144:1271–1284

    Article  CAS  PubMed  Google Scholar 

  32. Vale RD, Schnapp BJ, Reese TS, Sheetz MP (1985) Cell 40:449–454

    Google Scholar 

  33. Debrabander M, Nuydens R, Geerts H, Hopkins CR (1988) Cell Motil Cytoskel 9:30–47

    Google Scholar 

  34. Herr FB, Heath MC (1982) Exp Mycol 6:15–24

    Google Scholar 

  35. Grigoriev IS, Chernobelskaya AA, Vorobjev IA (1999) Biol Membrany 16:21–41

    Google Scholar 

  36. Matteoni R, Kreis TE (1987) J Cell Biol 105:1253–1265

    Google Scholar 

Download references

Acknowledgments

This initial work was supported by a grant from the National Institutes of Health, Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Walt.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiCesare, C., Biran, I. & Walt, D.R. Individual cell migration analysis using fiber-optic bundles. Anal Bioanal Chem 382, 37–43 (2005). https://doi.org/10.1007/s00216-005-3142-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3142-3

Keywords

Navigation