Skip to main content
Log in

ESI–MS method for in vitro investigation of skin penetration by copper–amino acid complexes: from an emulsion through a model membrane

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Copper can be found in many cosmetic formulations, mainly as complexes with peptides, hydroxyacids or amino acids. The main reason that the usage of this element in this context is still increasing is its beneficial biochemical activity, although the mechanism that enables its complexes to permeate through skin barriers is largely unknown. The ability of copper complexes with amino acids to penetrate through the stratum corneum and participate in copper ion transport processes is key to their cosmetic and pharmaceutical activities. The penetration process was studied in vitro in a model system, a Franz diffusion cell with a liposome membrane, where a liquid crystalline system with physicochemical properties similar to those of the intercellular cement of stratum corneum was used to model the skin barrier. The influences of various ligands on the model membrane migration rate of copper ions was studied, and the results highlighted the crucial roles of metal ion complex structure and stability in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Linder MC (2001) Mutat Res 475:141–152

    CAS  Google Scholar 

  2. Tapiero H, Townsend DM, Tew KD (2003) Biomed Pharmacother 57:386–398

    Article  CAS  Google Scholar 

  3. Brewer GJ (2003) Curr Opin Chem Biol 7:207–212

    Article  CAS  Google Scholar 

  4. Guy RH, Hostynek JJ, Hinz RS, Lorence CR (1999) Metals and the skin. Marcel Dekker, New York

    Google Scholar 

  5. Linder MC, Hazegh-Azam M (1996) Am J Clin Nutr Suppl 63:797–811

    Google Scholar 

  6. Ma Y, Ogino T, Kawabata T, Yoshino T, Yang BB, Okada S (1998) Free Rad Biol Med 25:568–575

    Article  CAS  Google Scholar 

  7. Sorenson JRJ (1985) Comp Ther 11:49–64

    CAS  Google Scholar 

  8. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  CAS  Google Scholar 

  9. Ettinger MJ, Darwish HM, Schmitt RC (1986) Fed Proc 45:2800–2804

    CAS  Google Scholar 

  10. McArdle HJ, Gross SM, Danks DM (1988) J Cell Physiol 136:373–378

    Article  CAS  Google Scholar 

  11. Sarkar B (1997) Ann Neurol 41:134–136

    Article  CAS  Google Scholar 

  12. Deschamps P, Kulkarni PP, Gautam-Basak M, Sarkar B (2005) Coordin Chem Rev 249:895–909

    Article  CAS  Google Scholar 

  13. Meyer LA, Prohaska AP, Harris ZL (2001) J Biol Chem 276:36857–36861

    Article  CAS  Google Scholar 

  14. Van Dyke BR, Saltman P (1993) J Biol Chem 268:21533–21537

    Google Scholar 

  15. Mas A, Sarkar B (1992) Biochim Biophys Acta 1135:123–128

    Article  CAS  Google Scholar 

  16. Hostynek JJ (2003) Food Chem Toxicol 41:327–345

    Article  CAS  Google Scholar 

  17. Feldman RJ, Maibach HJ (1966) Arch Dermatol 91:649–651

    Article  Google Scholar 

  18. Hostynek JJ, Drecher F, Maibach HJ (2006) Food Chem Toxicol 44:1539–1543

    Article  CAS  Google Scholar 

  19. Walker WR, Reeves RR, Brosnan M, Coleman GD (1977) Bioinorg Chem 7:271–276

    Article  CAS  Google Scholar 

  20. Pirot F, Panisset F, Agache P, Humbert P (1996) Skin Pharmacol 9:43–52

    Article  CAS  Google Scholar 

  21. EC (2003) Seventh amendment of Directive 76/768/EEC on Cosmetic Products, Directive 2003/15/EC. European Communities, Brussels

  22. Balaguer A, Salvador A, Chisvert A, Melia M, Herraez M, Diez O (2006) Anal Bioanal Chem 385:1225–1232

    Article  CAS  Google Scholar 

  23. Mazurowska L, Mojski M (2007) Talanta 72:650–654

    Article  CAS  Google Scholar 

  24. Bosman IJ, Lawant AL, Aegaart SR, Ensing K, de Zeeuw RA (1996) J Pharm Biomed Anal 14:1015–1023

    Article  CAS  Google Scholar 

  25. Shokri J, Nokhodchi A, Dashbolaghi A (2001) Int J Pharm 228:99–107

    Article  CAS  Google Scholar 

  26. Oborska A, Arct J, Mojski M, Jaremko E (2004) J Appl Cosmet 22:35–42

    CAS  Google Scholar 

  27. Hatanaka T, Inuma M, Sugibayashi K, Morimoto Y (1990) Chem Pharm Bull 38:3452–3459

    CAS  Google Scholar 

  28. Matsuzaki K, Imaoka T, Asano M, Miyajima K (1993) Chem Pharm Bull 41:575–579

    CAS  Google Scholar 

  29. Houk J, Guy RH (1998) Chem Rev 88:455–471

    Article  Google Scholar 

  30. Haywood LJA, Sutcliffe P (1956) Analyst 81:651–655

    Article  CAS  Google Scholar 

  31. Schaefer H, Redelmeier TE (1996) Skin barrier. Principles of percutaneous Absorption. S. Karger AG, Basel

    Google Scholar 

  32. Połeć-Pawlak K, Ruzik R, Abramski K, Ciurzyńska M, Gawrońska H (2005) Anal Chim Acta 540:61–70

    Article  CAS  Google Scholar 

  33. Martell AE, Smith RM (1974) Critical Stability Constants. Plenum Press, New York

    Google Scholar 

  34. Wódzki R, Nowaczyk J (2001) J Appl Polym Sci 80:2705–2717

    Article  Google Scholar 

Download references

Acknowledgements

The Warsaw University of Technology financially supported the work. The authors are thankful to Lipoid GmBH (Germany) for the kind gift of Cerasome 9005, and they are grateful to Rafał Ruzik for valuable help with the ESI MS study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Mazurowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurowska, L., Nowak-Buciak, K. & Mojski, M. ESI–MS method for in vitro investigation of skin penetration by copper–amino acid complexes: from an emulsion through a model membrane. Anal Bioanal Chem 388, 1157–1163 (2007). https://doi.org/10.1007/s00216-007-1345-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1345-5

Keywords

Navigation