Skip to main content
Log in

Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, an electrochemical dihydronicotinamide adenine dinucleotide (NADH) sensor based on the catalytic growth of Au nanoparticles (Au NPs) on glassy carbon electrode was developed. Catalyzed by Au NPs immobilized on pretreated glassy carbon electrode, the reduction of AuCl4 in the presence of hydroquinone and cetyltrimethyl ammonium chloride led to the formation of enlarged Au NPs on the electrode surface. Spectrophotometry and high-resolution scanning electronic microscope (SEM) analysis of the sensor morphologies before and after biocatalytic reaction revealed a diameter growth of the nanoparticles. The catalytic growth of Au NPs on electrode surface remarkably facilitated the electron transfer and improved the performance of the sensor. Under optimal conditions, NADH could be detected in the range from 1.25 × 10−6 to 3.08 × 10−4 M, and the detection limit was 2.5 × 10−7 M. The advantages of the proposed sensor, such as high precision and sensitivity, fast response, low cost, and good storage stability, made it suitable for on-line detection of NADH in complex biological systems and contaminant degradation processes.

Schematic presentation of the bioelectrocatalytic sensing of NADH

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang X, El-Sayed IH, Yi X, El-Sayed MA (2005) J Photochem Photobio B Biology 81:76–83

    Article  CAS  Google Scholar 

  2. Álvarez-González MI, Saidman SB, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2000) Anal Chem 72:520–527

    Article  Google Scholar 

  3. Gorton L, Dominguez E (2002) Rev Mol Biotech 82:371–392

    Article  CAS  Google Scholar 

  4. Tang L, Zeng GM, Wang H, Shen GL, Huang DL (2005) Enzyme Microb Tech 36:960–966

    Article  CAS  Google Scholar 

  5. Gros P, Comtat M (2004) Biosens Bioelectron 20:204–210

    Article  CAS  Google Scholar 

  6. Jena BK, Raj CR (2006) Anal Chem 78:6332–6339

    Article  CAS  Google Scholar 

  7. Manesh KM, Santhosh P, Gopalan A, Lee KP (2008) Talanta 75:1307–1314

    Article  CAS  Google Scholar 

  8. Manso J, Mena ML, Yáñez-Sedeño P, Pingarrón JM (2008) Electrochim Acta 53:4007–4012

    Article  CAS  Google Scholar 

  9. Tian F, Zhu G (2004) Sensor Actuat B 97:103–108

    Article  Google Scholar 

  10. Valentini F, Salis A, Curulli A, Palleschi G (2004) Anal Chem 76:3244–3248

    Article  CAS  Google Scholar 

  11. Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601–619

    Article  CAS  Google Scholar 

  12. Zhang Y, Zeng GM, Tang L, Huang DL, Jiang XY, Chen YN (2007) Biosens Bioelectron 22:2121–2126

    Article  CAS  Google Scholar 

  13. Tang L, Zeng G, Liu J, Xu X, Zhang Y, Shen G, Li Y, Liu C (2008) Anal Bioanal Chem 391:679–685

    Article  CAS  Google Scholar 

  14. Wang J, Musameh M (2003) Anal Chem 75:2075–2079

    Article  CAS  Google Scholar 

  15. Banks CE, Compton RG (2005) Analyst 130:1232–1239

    Article  CAS  Google Scholar 

  16. Yu A, Liang Z, Cho J, Caruso F (2003) Nano Lett 3:1203–1207

    Article  CAS  Google Scholar 

  17. Wang J (2005) Small 1:1036–1043

    Article  CAS  Google Scholar 

  18. Tang L, Zeng GM, Shen GL, Li YP, Zhang Y, Huang DL (2008) Environ Sci Technol 42:1207–1212

    Article  CAS  Google Scholar 

  19. Mao X, Jiang J, Luo Y, Shen G, Yu R (2007) Talanta 73:420–424

    Article  CAS  Google Scholar 

  20. Shlyahovsky B, Katz E, Xiao Y, Pavlov V, Willner I (2005) Small 1:213–216

    Article  CAS  Google Scholar 

  21. Willner I, Basnar B, Willner B (2007) FEBS J 274:302–309

    Article  CAS  Google Scholar 

  22. Zhao W, Ge PY, Xu JJ, Chen HY (2007) Langmuir 23:8597–8601

    Article  CAS  Google Scholar 

  23. Zayats M, Baron R, Popov I, Willner I (2005) Nano Lett 5:21–25

    Article  CAS  Google Scholar 

  24. Urban M, Möller R, Fritzsche W (2003) Rev Sci Instrum 74:1077–1081

    Article  CAS  Google Scholar 

  25. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Anal Chem 75:5936–5943

    Article  CAS  Google Scholar 

  26. Xu SP, Ji XH, Xu WQ, Li XL, Wang LY, Bai YB, Zhao B, Ozaki Y (2004) Analyst 129:63–83

    Article  CAS  Google Scholar 

  27. Xiao Y, Pavlov V, Levine S, Niazov T, Markovitch G, Willner I (2004) Angew Chem Int Ed 43:4519–4522

    Article  CAS  Google Scholar 

  28. Willner I, Baron R, Willner B (2006) Adv Mater 18:1109–1120

    Article  CAS  Google Scholar 

  29. Atchley SH, Clark JB (1979) Appl Environ Microb 38:1040–1044

    Google Scholar 

  30. Tarre S, Green M (2004) Appl Environ Microb 70:6481–6487

    Article  CAS  Google Scholar 

  31. Radoi A, Compagnone D, Valcarcel MA, Placidi P, Materazzi S, Moscone D, Palleschi G (2008) Electrochim Acta 53:2161–2169

    Article  CAS  Google Scholar 

  32. Gligor D, Balaj F, Maicaneanu A, Gropeanu R, Grosu I, Muresan L, Popescu IC (2008) Mater Chem Phys. doi:10.1016/j.matchemphys.2008.07.077 in press

  33. Arroyo A, Kagan VE, Tyurin VA, Burgess JR, de Cabo R, Navas P, Villalba JM (2000) Antioxid Redox Sign 2:251–262

    Article  CAS  Google Scholar 

  34. Musameh M, Wang J, Merkoci A, Lin Y (2002) Electrochem Commun 4:743–746

    Article  CAS  Google Scholar 

  35. Chen J, Bao J, Cai C, Lu T (2004) Anal Chim Acta 516:29–34

    Article  CAS  Google Scholar 

  36. Xiao L, Wildgoose GG, Compton RG (2008) Anal Chim Acta 620:44–49

    Article  CAS  Google Scholar 

  37. Zeng G, Tang L, Shen G, Huang G, Niu C (2004) Int J Environ Anal Chem 84:761–774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the National Natural Science Foundation of China (No.50608029), the National 863 High Technology Research Program of China (No.2004AA649370, No.2006AA06Z407), the Chinese National Basic Research Program (973 Program; No.2005CB724203), the Natural Foundation for Distinguished Young Scholars (No.50425927, No.50225926), Program for Changjiang Scholars and Innovative Research Team in University (IRT0719) and the Hunan Provincial Natural Science Foundation of China (06JJ20062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Zeng, G., Shen, G. et al. Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode. Anal Bioanal Chem 393, 1677–1684 (2009). https://doi.org/10.1007/s00216-008-2560-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2560-4

Keywords

Navigation