Skip to main content
Log in

Bioconjugation techniques for microfluidic biosensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have evaluated five bioconjugation chemistries for immobilizing DNA onto silicon substrates for microfluidic biosensing applications. Conjugation by organosilanes is compared with linkage by carbonyldiimidazole (CDI) activation of silanol groups and utilization of dendrimers. Chemistries were compared in terms of immobilization and hybridization density, stability under microfluidic flow-induced shear stress, and stability after extended storage in aqueous solutions. Conjugation by dendrimer tether provided the greatest hybridization efficiency; however, conjugation by aminosilane treated with glutaraldehyde yielded the greatest immobilization and hybridization densities, as well as enhanced stability to both shear stress and extended storage in an aqueous environment. Direct linkage by CDI activation provided sufficient immobilization and hybridization density and represents a novel DNA bioconjugation strategy. Although these chemistries were evaluated for use in microfluidic biosensors, the results provide meaningful insight to a number of nanobiotechnology applications for which microfluidic devices require surface biofunctionalization, for example vascular prostheses and implanted devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Erickson D, Liu XZ, Venditti R et al (2005) Anal Chem 77:4000–4007

    Article  CAS  Google Scholar 

  2. Ng JKK, Liu WT (2006) Anal and Bioanal Chem 386:427–434

    Article  CAS  Google Scholar 

  3. Dawson E, Moore C, Smagala J et al (2006) Anal Chem 78:7610–7615

    Article  CAS  Google Scholar 

  4. Zammatteo N, Jeanmart L, Hamels S et al (2000) Anal Biochem 280:143–150

    Article  CAS  Google Scholar 

  5. Wang YY, Prokein T, Hinz M et al (2005) Anal Biochem 344:216–223

    CAS  Google Scholar 

  6. Fritz J, Baller MK, Lang HP et al (2000) Science 288:316–318

    Article  CAS  Google Scholar 

  7. Wang AF, Tang HY, Cao T et al (2005) J Colloid Interface Sci 291:438–447

    Article  CAS  Google Scholar 

  8. Szczepanski V, Vlassiouk I, Smirnov S (2006) J Membr Sci 281:587–591

    Article  CAS  Google Scholar 

  9. Anker JN, Hall WP, Lyandres O et al (2008) Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  10. Vollmer F, Arnold S (2008) Nat Methods 5:591–596

    Article  CAS  Google Scholar 

  11. Mandal S, Erickson D (2008) Opt Express 16:1623–1631

    Article  Google Scholar 

  12. Aretaki IN, Koulouridakis P, Kallithrakas-Kontos N (2006) Anal Chim Acta 562:252–257

    Article  CAS  Google Scholar 

  13. Pathak S, Singh AK, McElhanon JR et al (2004) Langmuir 20:6075–6079

    Article  CAS  Google Scholar 

  14. Keighley SD, Li P, Estrela P et al (2008) Biosens Bioelectron 23:1291–1297

    Article  CAS  Google Scholar 

  15. Lee CY, Nguyen PCT, Grainger DW et al (2007) Anal Chem 79:4390–4400

    Article  CAS  Google Scholar 

  16. Southern E, Mir K, Shchepinov M (1999) Nat Genet 21:5–9

    Article  CAS  Google Scholar 

  17. Shchepinov MS, Case-Green SC, Southern EM (1997) Nucleic Acids Res 25:1155–1161

    Article  CAS  Google Scholar 

  18. Pirri G, Chiari M, Damin F et al (2006) Anal Chem 78:3118–3124

    Article  CAS  Google Scholar 

  19. Le Berre V, Trevisiol E, Dagkessamanskaia A et al (2003) Nucleic Acids Res 31:e88

    Article  CAS  Google Scholar 

  20. Bhatnagar P, Mark SS, Kim I et al (2006) Adv Mater 18:315–319

    Article  CAS  Google Scholar 

  21. Benters R, Niemeyer CM, Drutschmann D et al (2002) Nucleic Acids Res 30:e10

    Article  Google Scholar 

  22. Caminade AM, Padie C, Laurent R et al (2006) Sensors 6:901–914

    Article  CAS  Google Scholar 

  23. Cote GL, Lec RM, Pishko MV (2003) IEEE Sens J 3:251–266

    Article  CAS  Google Scholar 

  24. Erickson D, Li DQ, Krull UJ (2003) Anal Biochem 317:186–200

    Article  CAS  Google Scholar 

  25. Becker H, Locascio LE (2002) Talanta 56:267–287

    Article  CAS  Google Scholar 

  26. Bange A, Halsall HB, Heineman WR (2005) Biosens Bioelectron 20:2488–2503

    Article  CAS  Google Scholar 

  27. Ros A (2008) Anal Bioanal Chem 390:799–800

    Article  CAS  Google Scholar 

  28. Tegenfeldt JO, Prinz C, Cao H et al (2004) Anal Bioanal Chem 378:1678–1692

    Article  CAS  Google Scholar 

  29. Wei CW, Cheng JY, Huang CT et al (2005) Nucleic Acids Res 33:e78

    Article  Google Scholar 

  30. Dittrich PS, Tachikawa K, Manz A (2006) Anal Chem 78:3887–3907

    Article  CAS  Google Scholar 

  31. Duffy DC, McDonald JC, Schueller OJA et al (1998) Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  32. PAMAM Dendrimers (2008) Dendritech, Midland, MI. http://www.dendritech.com/pamam.html. Accessed 08 Dec 2008

  33. Coates J (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  34. Kempfert KD (2007) Spectroscopy 22:22–23

    Google Scholar 

  35. Kurth DG, Bein T (1995) Langmuir 11:578–584

    Article  CAS  Google Scholar 

  36. Parrott MC, Valliant JF, Adronov A (2006) Langmuir 22:5251–5255

    Article  CAS  Google Scholar 

  37. Haba Y, Harada A, Takagishi T et al (2004) J Amer Chem Soc 126:12760–12761

    Article  CAS  Google Scholar 

  38. Kawahara J, Ohmori T, Ohkubo T et al (1992) Anal Biochem 201:94–98

    Article  CAS  Google Scholar 

  39. Whipple EB, Ruta M (1974) J Org Chem 39:1666–1668

    Article  CAS  Google Scholar 

  40. Migneault I, Dartiguenave C, Bertrand MJ et al (2004) BioTechniques 37:790–802

    CAS  Google Scholar 

  41. Saiyed ZM, Sharma S, Godawat R et al (2007) J Biotechnol 131:240–244

    Article  CAS  Google Scholar 

  42. Pal S, Kim MJ, Song JM (2008) Lab Chip 8:1332–1341

    Article  CAS  Google Scholar 

  43. Steel AB, Levicky RL, Herne TM et al (2000) Biophys J 79:975–981

    Article  CAS  Google Scholar 

  44. Niu YH, Sun L, Crooks RA (2003) Macromolecules 36:5725–5731

    Article  CAS  Google Scholar 

  45. Cakara D, Kleimann J, Borkovec M (2003) Macromolecules 36:4201–4207

    Article  CAS  Google Scholar 

  46. Quail M (2005) DNA: mechanical breakage. Encyclopedia of life sciences. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  47. Panton RL (1996) Incompressible flow, 2nd edn. Wiley, New York

    Google Scholar 

  48. Hermanson GT (1996) Bioconjugate techniques. Academic, New York

    Google Scholar 

  49. Lee HJ, Nedelkov D, Corn RM (2006) Anal Chem 78:6504–6510

    Article  CAS  Google Scholar 

  50. Bencina M, Babic J, Podgornik A (2007) J Chromatogr. A 1144:135–142

    CAS  Google Scholar 

  51. Wong AKY, Krull UJ (2005) Anal Bioanal Chem 383:187–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by the National Institutes of Health-National Institute of Biomedical Imaging and Bioengineering (NIH-NIBIB) under grant number R21EB007031. This work made use of STC shared experimental facilities supported by the National Science Foundation under Agreement No. ECS-9876771. The authors gratefully acknowledge Dr. Sam Nugen and Prof. Antje Baeumner for technical assistance in determining hybridization conditions and Sudeep Mandal for preparation of PDMS master.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Erickson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Schematic of DNA immobilization and microfluidic hybridization assays. Immobilization of DNA in spots defined by a PDMS mask is depicted in the image in the back. After immobilization of DNA, a microfluidic channel (1 mm × 2 cm × 45 μm) is aligned over the immobilized DNA, and target DNA is made to flow through the channel at 2 μl/min, as depicted in the image in the front. (PDF 1017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goddard, J.M., Erickson, D. Bioconjugation techniques for microfluidic biosensors. Anal Bioanal Chem 394, 469–479 (2009). https://doi.org/10.1007/s00216-009-2731-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2731-y

Keywords

Navigation