Skip to main content
Log in

Raman spectra of pure biomolecules obtained using a handheld instrument under cold high-altitude conditions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A handheld Raman spectrometer (Ahura First Defender) was tested for the unambiguous identification of biomolecules (pure amino acids, carboxylic acids, saccharides and trehalose) in the solid state under outdoor conditions (including moderate climate conditions as well as cold temperatures and high altitudes). The biomolecules investigated represent important objects of interest for future exobiological missions. Repetitive measurements carried out under identical instrumental setups confirmed the excellent reliability of the Raman spectrometer. Raman bands are found at correct wavenumbers ±3 cm−1 compared with reference values. This testing represents the first step in a series of studies. In a preliminary, challenging investigation to determine the detection limit for glycine dispersed in a powdered gypsum matrix, 10% was the lowest content confirmed unambiguously. Clearly there is a need to investigate further the detection limits of Raman spectroscopic analyses of biomolecules in more complex samples, to demonstrate the usefulness or disqualify the use of this technique for more realistic outdoor situations, such as eventual future missions to Mars.

Application of a portable Raman spectrometer at 3,300 m near the Corvatsch glacier

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP (2009) Science 325:58–61

    CAS  Google Scholar 

  2. Boynton WV, Ming DW, Kounaves SP, Young SMM, Arvidson RE, Hecht MH, Hoffman J, Niles PB, Hamara DK, Quinn RC, Smith PH, Sutter B, Catling DC, Morris RV (2009) Science 325:61–64

    CAS  Google Scholar 

  3. Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Science 325:64–67

    CAS  Google Scholar 

  4. Ellery A, Wynn-Williams D, Parnell J, Edwards HGM, Dickensheets D (2004) J Raman Spectrosc 35:441–457

    Article  CAS  Google Scholar 

  5. Sobron P, Sobron F, Sanz A, Rull F (2008) Appl Spectrosc 62:364–370

    Article  CAS  Google Scholar 

  6. Brewer P, Malby G, Pasteris J, White S, Peltzer E, Wopenka B, Freeman J, Brown M (2004) Deep Sea Res 51:739–753

    Article  CAS  Google Scholar 

  7. Pasteris JD, Wopenka B, Freeman JJ, Brewer PG, White SN, Peltzer ET, Malby GE (2004) Appl Spectrosc 58:195A–208A

    Article  CAS  Google Scholar 

  8. Hester KC, Dunk RM, White SN, Brewer PG, Peltzer ET, Sloan ED (2007) Geochim Cosmochim Acta 71:2947–2959

    Article  CAS  Google Scholar 

  9. Sharma SK (2007) Spectrochim Acta A 68:1008–1022

    Article  Google Scholar 

  10. Stopar JD, Lucey PG, Sharma SK, Misra AK, Taylor GJ, Hubble HW (2004) Spectrochim Acta A 61:2315–2323

    Google Scholar 

  11. Misra AK, Sharma SK, Lucey PG (2006) Appl Spectrosc 60:223–228

    Article  CAS  Google Scholar 

  12. Harvey SD, Vucelick ME, Lee RN, Wright BW (2002) Forensic Sci Int 125:12–21

    Article  CAS  Google Scholar 

  13. Edwards HGM, Munshi T (2005) Anal Bioanal Chem 382:1398–1406

    Article  CAS  Google Scholar 

  14. Hargreaves MD, Page K, Munshi T, Tomsett R, Lynch G, Edwards HGM (2008) J Raman Spectrosc 39:873–880

    Article  CAS  Google Scholar 

  15. Ali EMA, Edwards HGM, Hargreaves MD, Scowen IJ (2009) J Raman Spectrosc 40:144–149

    Article  CAS  Google Scholar 

  16. Fini G (2004) J Raman Spectrosc 35:335–337

    Article  CAS  Google Scholar 

  17. De Veij M, Vandenabeele P, de Beer T, Remonc JR, Moens L (2009) J Raman Spectrosc 40:297–307

    Article  Google Scholar 

  18. Vandenabeele P, Tate J, Moens L (2007) Anal Bioanal Chem 387:813–819

    Article  CAS  Google Scholar 

  19. Yan F, Vo-Dinh T (2007) Sens Actuators B Chem 121:61–66

    Article  Google Scholar 

  20. Moore DS, Scharff RJ (2009) Anal Bioanal Chem 393:1571–1578

    Article  CAS  Google Scholar 

  21. Jehlička J, Vítek P, Edwards HGM, Hargreaves M, Čapoun T (2009) Spectrochim Acta A 73:410–419

    Article  Google Scholar 

  22. Jehlička J, Vítek P, Edwards HGM, Hargreaves M, Čapoun T (2009) J Raman Spectrosc 40:1082–1086

    Article  Google Scholar 

  23. Jehlička J, Vítek P, Edwards HGM, Hargreaves M, Čapoun T (2009) J Raman Spectrosc 40:1645–1650

    Article  Google Scholar 

  24. Jehlička J, Vítek P, Edwards HGM (2009) J Raman Spectrosc 41:440–444

    Google Scholar 

  25. Jehlička J, Culka A (2009) J Raman Spectrosc. doi:10.1002/jrs.2410

    Google Scholar 

  26. De Gelder J, de Gussem K, Vandenabeele P, Vancanneyt M, De Vos P, Moens L (2007) Anal Chim Acta 603:167–175

    Article  Google Scholar 

  27. De Gelder J, de Gussem K, Vandenabeele P, De Vos P, Moens L (2007) Anal Chim Acta 585:234–240

    Article  Google Scholar 

  28. Hutsebaut D, Vandenabeele P, Moens L (2005) Analyst 130:1204–1214

    Article  CAS  Google Scholar 

  29. De Gelder J, de Gussem K, Vandenabeele P, Moens L (2007) J Raman Spectrosc 38:1133–1147

    Article  Google Scholar 

  30. Shurvell HF, Bergin FJ (1989) J Raman Spectrosc 20:163–168

    Article  CAS  Google Scholar 

  31. Lima JA Jr, Freire PTC, Lima RJC, Moreno AJD, Mendes Filho J, Melo FEA (2005) J Raman Spectrosc 36:1076–1081

    Article  CAS  Google Scholar 

  32. Vítek P, Osterrothová K, Jehlička (2009) J Planet Space Sci 57:454–459

    Article  Google Scholar 

  33. Osterrothová K, Jehlička J (2009) Spectrochim Acta Part A 73:576–580

    Article  Google Scholar 

  34. Culka A, Jehlička J (2010) J Raman Spectrosc. doi:10.1002/jrs.2643

    Google Scholar 

  35. Alajtal AI, Edwards HGM, Scowen IJ (2010) Anal Bioanal Chem 397:215–221

    Article  CAS  Google Scholar 

  36. Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM (2007) Anal Chim Acta 588:108–116

    Article  CAS  Google Scholar 

  37. Tarcea N, Frosch T, Rosch P, Hilchenbach M, Stuffler T, Hofer S, Thiele H, Hochleitner R, Popp J (2008) Space Sci Rev 135:281–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the VZ project of the Ministry of Education of the Czech Republic (grant MSM0021620855) as well as support by grant 133107 from the Grant Agency of Charles University in Prague. Additional support by a grant 261203 (Charles University in Prague) is acknowledged. Part of this work was supported by GACR (project 210/10/0467). P.V. is grateful to Ghent University (project BOF-4J-I/00022/02) and the Belgian Government (IAP-program P6/16) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Jehlička.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM

(PDF 3210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jehlička, J., Vandenabeele, P., Edwards, H.G.M. et al. Raman spectra of pure biomolecules obtained using a handheld instrument under cold high-altitude conditions. Anal Bioanal Chem 397, 2753–2760 (2010). https://doi.org/10.1007/s00216-010-3849-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3849-7

Keywords

Navigation