Skip to main content

Advertisement

Log in

DC insulator dielectrophoretic applications in microdevice technology: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dielectrophoresis is a noninvasive, nondestructive, inexpensive, and fast technique for the manipulation of bioparticles. Recent advances in the field of dielectrophoresis (DEP) have resulted in new approaches for characterizing the behavior of particles and cells using direct current (DC) electric fields. In such approaches, spatial nonuniformities are created in the channel by embedding insulating obstacles in the channel or flow field in order to perform separation or trapping. This emerging field of dielectrophoresis is commonly termed DC insulator dielectrophoresis (DC-iDEP), insulator-based dielectrophoresis (iDEP), or electrodeless dielectrophoresis (eDEP). In many microdevices, this form of dielectrophoresis has advantages over traditional AC-DEP, including single material microfabrication, remotely positioned electrodes, and reduced fouling of the test region. DC-iDEP applications have included disease detection, separation of cancerous cells from normal cells, and separation of live from dead bacteria. However, there is a need for a critical report to integrate these important research findings. The aim of this review is to provide an overview of the current state-of-art technology in the field of DC-iDEP for the separation and trapping of inert particles and cells. In this article, a review of the concepts and theory leading to the manipulation of particles via DC-iDEP is given, and insulating obstacle geometry designs and the characterization of device performance are discussed. This review compiles and compares the significant findings obtained by researchers in handling and manipulating particles.

Common insulating obstacle geometries reported in the literature. Red zones indicate where the particles experience the maximum dielectrophoretic effect under DC or DC plus AC-biased electric field conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gawron AJ, Martin RS, Lunte SM (2001) Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. Eur J Pharm Sci 14(1):1–12

    Article  CAS  Google Scholar 

  2. Tüdos AJ, Besselink GAJ, Schasfoort RBM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95

    Article  Google Scholar 

  3. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1:244–248

    Article  Google Scholar 

  4. Srivastava SK, Daggolu PR, Burgess S, Minerick AR (2008) Dielectrophoretic characterization of erythrocytes: positive abo blood types. Electrophoresis 29:5033–5046

    Article  CAS  Google Scholar 

  5. Minerick AR (2008) The rapidly growing field of micro and nanotechnology to measure living cells. AIChE J 54(9):2230–2237

    Article  CAS  Google Scholar 

  6. Minerick AR (2008) DC dielectrophoresis in lab-on-a-chip devices. In: Li D (ed) Encyclopedia of micro- and nanofluidics. Springer, Berlin

  7. Keshavamurthy SS, Leonard KM, Burgess SC, Minerick AR (2008) Direct current dielectrophoretic characterization of erythrocytes: positive ABO blood types. In: NSTI-Nanotech, Boston, MA, 1–5 June 2008, pp 401–404

  8. K-i O, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29:4443–4453

    Article  Google Scholar 

  9. Walt DR (2005) Miniature analytical methods for medical diagnostics. Science 308:217–219

    Article  CAS  Google Scholar 

  10. Yu L, Huang H, Dong X, Wu D, Qin J, Lin B (2008) Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips. Electrophoresis 29:5055–5060

    Google Scholar 

  11. Kua CH, Lam YC, Yang C, Youcef-Toumi K (2005) Review of bio-particle manipulation using dielectrophoresis (Innovation in Manufacturing Systems and Technology collection, Singapore-MIT Alliance community). DSpace, MIT, Cambridge

  12. Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AlChE J 47(6):1250–1254

    CAS  Google Scholar 

  13. Saliterman SS (2006) Fundamentals of biomems and medical microdevices. SPIE, Bellingham

  14. Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, Cambridge

    Google Scholar 

  15. Pohl HA (1978) Dielectrophoresis the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge

    Google Scholar 

  16. Minerick AR, Zhou R, Takhistov P, Chang H-C (2003) Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis 24:3703–3717

    Article  CAS  Google Scholar 

  17. Cheng I-F, Chang H-C, Hou D, Chang H-C (2007) An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1(021503):1–15

    Google Scholar 

  18. Chou C-F, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J 83(4):2170–2179

    Article  CAS  Google Scholar 

  19. Gencoglu A, Minerick AR (2009) Chemical and morphological changes on platinum microelectrode surfaces in AC and DC fields with biological buffer solutions. Lab Chip 9:1866–1873

    Google Scholar 

  20. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2003) High throughput electrodeless dielectrophoresis of viruses in polymeric microdevices. In: 7th lnt Conf on Miniaturized Chemical and Biochemical Analysis Systems, Squaw Valley, CA, USA, 5–9 Oct 2003, pp 607–610

  21. Masuda S, Washizu M, Nanba T (1989) Novel method of cell fusion in field constriction area in fluid integrated circuit. IEEE Trans Ind Appl 25:732–737

    Article  Google Scholar 

  22. Lee SW, Yang SD, Kim YW, Kim YK, Lee SH (1994) Micromachined cell handling devices. In: 16th Annu Int IEEE Conf Medicine and Biology Society, Baltimore, MD, USA, 3–6 Nov 1994, pp 1019–1020

  23. Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y (2005) An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J Microbiol Meth 62:317–326

    Article  CAS  Google Scholar 

  24. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76(6):1571–1579

    Article  CAS  Google Scholar 

  25. Kang KH, Kang Y, Xuan X, Li D (2006) Continuous separation of microparticles by size with direct current-dielectrophoresis. Electrophoresis 27:694–702

    Article  CAS  Google Scholar 

  26. Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75:4724–4731

    Article  CAS  Google Scholar 

  27. Mela P, Avd B, Fintschenk Y, Cummings EB, Simmons BA, Kirby BJ (2005) The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Electrophoresis 26:1792–1799

    Article  CAS  Google Scholar 

  28. Lapizco-Encinas BH, Rito-Palomares M (2007) Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28:4521–4538

    Article  CAS  Google Scholar 

  29. Lapizco-Encinas BH, Ozuna-Chacon S, Rito-Palomares M (2008) Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. J Chromatogr A 1206(1):45–51. doi:10.1016/j.chroma.2008.05.077

    Article  CAS  Google Scholar 

  30. Gallo-Villanueva RC, Rodriguez-Lopez CE, Diaz-de-la-Garza RI, Reyes-Betanzo C, Lapizco-Encinas BH (2009) DNA manipulation by means of insulator based dielectrophoresis employing direct current electric fields. Electrophoresis 30:4195–4205

    Article  CAS  Google Scholar 

  31. Baylon-Cardiel JL, Lapizco-Encinas BH, Reyes-Betanzo C, Chavez-Santoscoy AV, Martinez-Chapa SO (2009) Prediction of trapping zones in an insulator-based dielectrophoretic device. Lab Chip 9:2896–2901

    Article  CAS  Google Scholar 

  32. Moncada-Hernández H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bioanal Chem 396:1805–1816

    Article  Google Scholar 

  33. Thwar PK, Linderman JJ, Burns MA (2007) Electrodeless direct current dielectrophoresis using reconfigurable field-shaping oil barriers. Electrophoresis 28:4572–4581

    Article  CAS  Google Scholar 

  34. Kang Y, Li D, Kalams SA, Eid JE (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices 10(2):243–249

    Google Scholar 

  35. Zhang L, Tatar F, Turmezei P, Bastemeijer J, Mollinger JR, Piciu O, Bossche A (2006) Continuous electrodeless dielectrophoretic separation in a circular channel. J Phys 34:527–532

    Google Scholar 

  36. Ozuna-Chacón S, Lapizco-Encinas BH, Rito-Palomares M, Martínez-Chapa SO, Reyes-Betanzo C (2008) Performance characterization of an insulator-based dielectrophoretic microdevice. Electrophoresis 29:3115–3122

    Article  Google Scholar 

  37. Barrett LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ (2005) Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Anal Chem 77(21):6798–6804

    Article  CAS  Google Scholar 

  38. Golan S, Elata D, Orenstein M, Dinnar U (2006) Floating electrode dielectrophoresis. Electrophoresis 27:4919–4926

    Article  CAS  Google Scholar 

  39. Kang Y, Cetin B, Wu Z, Li D (2009) Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim Acta 54:1715–1720

    Google Scholar 

  40. Kang KH, Kang Y, Xuan X, Li D (2006) Effects of DC-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys 99(6):064702–064708

    Google Scholar 

  41. Hawkins BG, Smith AE, Syed YA, Kirby BJ (2007) Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, DC-biased, AC electric fields. Anal Chem 79(19):7291–7300

    Google Scholar 

  42. Zhu J, Xuan X (2009) Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC electric fields. Electrophoresis 30:2668–2675

    Google Scholar 

  43. Barbulovic-Nad I, Xuan X, Lee JSH, Li D (2006) DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip 6:274–279

    Google Scholar 

  44. Chou C-F, Zenhausern F (2003) Electrodeless dielectrophoresis for micro total analysis systems. IEEE Eng Med Biol Mag 22:62–67

    Google Scholar 

  45. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25(10–11):1695–1704. doi:10.1002/elps.200405899

    Article  CAS  Google Scholar 

  46. Sabounchi P, Morales AM, Ponce P, Lee LP, Simmons BA, Davalos RV (2008) Sample concentration and impedance detection on a microfluidic polymer chip. Biomed Microdevices 10(5):661–670. doi:10.1007/s10544-008-9177-4

    Article  CAS  Google Scholar 

  47. Hsiao F-B, Hsu H-J, Chen H-Y, Hsu H-L (2007) The simulation study of bio-particle trapping with electrodeless dielectrophoresis. In: Proc 2nd IEEE Int Conf on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 Jan 2007

  48. Hsiao F-B, Jen C-P, Chen H-Y, Hsu H-L, Lee Y-C, Chuang C-H, Wang C-H (2008) The experimental studies of bio-particle trapping using electrodeless dielectrophoresis. In: Proc 3rd IEEE Int Conf on Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 Jan 2008

  49. Lewpiriyawong N, Yang C, Lam YC (2008) Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics 2:034105

    Google Scholar 

  50. Chen KP, Pacheco JR, Hayes MA, Staton SJR (2009) Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Electrophoresis 30:1441–1448

    Article  CAS  Google Scholar 

  51. Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79(12):4552–4557. doi:10.1021/Ac070534j

    Article  CAS  Google Scholar 

  52. Jen C-P, Huang Y-H, Chen T-W (2008) Cell trapping utilizing insulator-based dielectrophoresis in the open-top microchannels. In: Dans Symp on Design, Test, Integration and Packaging of MEMS/MOEMS, Nice, France, 9–11 April 2008

  53. Jen C-P, Chen T-W (2009) Trapping of cells by insulator-based dielectrophoresis using open-top microstructures. Microsyst Technol 15:1141–1148

    Article  CAS  Google Scholar 

  54. Zhang L, Bastemeijer J, Mollinger J, Bossche A (2008) Continuous dielectrophoretic separation in the iterative curves using DC-biased AC electric fields. In: Proc 3rd IEEE Int Conf on Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 Jan 2008

  55. Zhu J, Tzeng T-RJ HuG, Xuan X (2009) DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid Nanofluid 7:751–756

  56. Cho Y-K, Kim S, Lee K, Park C, Lee J-G, Ko C (2009) Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis 30:3153–3159

    Article  CAS  Google Scholar 

  57. Martínez-López JI, Moncada-Hernández H, Baylon-Cardiel JL, Martínez-Chapa SO, Rito-Palomares M, Lapizco-Encinas BH (2009) Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Anal Bioanal Chem 394:293–302

    Article  Google Scholar 

  58. Sabounchi P, Huber DE, Kanouff MP, Harris AE, Simmons BA (2008) Joule heating effects on insulator based dielectrophoresis. In: 12th Int Conf on Miniaturized Systems for Chemistry and Life Sciences, San Diego, CA, USA, 12–16 Oct 2008

  59. Chen D, Du H, Tay CY (2010) Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields. Nano Res Lett 5:55–60

    Google Scholar 

  60. Ai Y, Joo SW, Jiang Y, Xuan X, Qian S (2009) Transient electrophoretic motion of a charged particle through a converging–diverging microchannel: effect of direct current-dielectrophoretic force. Electrophoresis 30:2499–2506

    Article  CAS  Google Scholar 

  61. Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks RM (2008) Electrokinetics in microfluidic channels containing a floating electrode. J Am Chem Soc 130:10480–10481

    Article  CAS  Google Scholar 

  62. Golan S, Elata D, Dinnar U (2008) Hybrid dielectrophoresis devices that employ electrically floating electrodes. Sens Actuators A 142:138–146

    Article  Google Scholar 

  63. Shafiee H, Caldwell JL, Sano MB, Davalos RV (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11:997–1006

    Article  CAS  Google Scholar 

  64. Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (CDEP). Lab Chip 10:438–445

    Google Scholar 

  65. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  66. Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26

    Article  CAS  Google Scholar 

  67. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111

    Article  CAS  Google Scholar 

  68. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  CAS  Google Scholar 

  69. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Google Scholar 

  70. Davalos RV, McGraw GJ, Wallow TI, Morales AM, Krafcik KL, Fintschenko Y, Cummings EB, Simmons BA (2008) Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators. Anal Bioanal Chem 390(3):847–855. doi:10.1007/s00216-007-1426-5

    Article  CAS  Google Scholar 

  71. Frienda J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(026502):1–5. doi:10.1063/1.3259624

    Google Scholar 

  72. Freeman D, Gray M, Aranyosi A (2007) Manufacturing a PDMS microfluidic device via a silicon wafer master. Harvard-MIT Division of Health Sciences and Technology. http://umech.mit.edu/HST410/devicefab.php. Accessed Oct 2010

  73. Kirby BJ, Hasselbrink Jr EFH (2004) Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25:203–213

    Google Scholar 

  74. Berdichevsky Y, Khandurina J, Guttman A, Lo Y-H (2004) UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens Actuators B Chem 97:402–408

    Google Scholar 

  75. Chen L, Ren J, Bi R, Chen D (2004) Ultraviolet sealing and poly(dimethylacrylamide) modification for poly(dimethylsiloxane)/glass microchips. Electrophoresis 25:914–921

    Article  CAS  Google Scholar 

  76. Kelly RT, Pan T, Woolley AT (2005) Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Anal Chem 77(11):3536–3541

    Article  CAS  Google Scholar 

  77. Wu H, Huang B, Zare RN (2005) Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab Chip 5:1393–1398

    Article  CAS  Google Scholar 

  78. Hong SM, Kim SH, Kim JH, Hwang HI (2006) Hydrophilic surface modification of PDMS using atmospheric RF plasma. J Phys 34:656–661

    Google Scholar 

  79. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly(dimethyl)siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597

    Google Scholar 

  80. Badal MY, Wong M, Chiem N, Salimi-Moosavi H, Harrison DJ (2002) Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips. J Chromatogr A 947:277–286

    Article  Google Scholar 

  81. García CD, Dressen BM, Henderson A, Henry CS (2005) Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips. Electrophoresis 26:703–709

    Article  Google Scholar 

  82. Wang A-J, Xu J-J, Chen H-Y (2006) Nonionic surfactant dynamic coating of poly(dimethylsiloxane) channel surface for microchip electrophoresis of amino acids. Anal Chim Acta 569:188–194

    Article  CAS  Google Scholar 

  83. Liu Y, Fanguy JC, Bledsoe JM, Henry CS (2000) Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. Anal Chem 72:5939–5944

    Article  CAS  Google Scholar 

  84. Abate AR, Lee D, Do T, Holtze C, Weitz DA (2008) Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8:516–518

    Google Scholar 

  85. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8(1):425–454

    Article  CAS  Google Scholar 

  86. Xuan X, Raghibizadeh S, Li D (2006) Wall effects on electrophoretic motion of spherical polystyrene particles in a rectangular poly(dimethylsiloxane) microchannel. J Colloid Interface Sci 296:743–748

    Article  CAS  Google Scholar 

  87. Xuan X, Xu B, Sinton D, Li D (2004) Electroosmotic flow with Joule heating effects. Lab Chip 4:230–236

    Google Scholar 

  88. Huang B, Kim S, Wu H, Zare RN (2007) Use of a mixture of n-dodecyl-β-D-maltoside and sodium dodecyl sulfate in poly(dimethylsiloxane) microchips to suppress adhesion and promote separation of proteins. Anal Chem 79:9145–9149

    Google Scholar 

  89. Zhu J, Tzeng T-RJ, Xuan X (2010) Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31:1382–1388

    Article  CAS  Google Scholar 

  90. Zhu J, Xuan X (2009) Particle electrophoresis and dielectrophoresis in curved microchannels. J Colloid Interface Sci 340:285–290

    Article  CAS  Google Scholar 

  91. Ai Y, Qian S, Liu S, Joo SW (2010) Dielectrophoretic choking phenomenon in a converging–diverging microchannel. Biomicrofluidics 4:013201

    Google Scholar 

  92. Gray DS, Tan JL, Voldman J, Chen CS (2004) Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron 19:1765–1774

    Article  CAS  Google Scholar 

  93. Hölzel R, Calander N, Chiragwandi Z, Willander M, Bier FF (2005) Trapping single molecules by dielectrophoresis. Phys Rev Lett 95(128102):1–4

    Google Scholar 

  94. Andersson H, Avd B (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15:44–49

    Article  CAS  Google Scholar 

  95. Talary MS, Mills KI, Hoy T, Burnett AK, Pethig R (1995) Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Med Biol Eng Comput 33(2):235–237

    Google Scholar 

  96. Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15:426–432

    Article  CAS  Google Scholar 

  97. Fiedler S, Shirley SG, Schnelle T, Fuhr G (1998) Dielectrophoretic sorting of particles and cells in a microsystem. Anal Chem 70:1909–1915

    Article  CAS  Google Scholar 

  98. Xu C, Wang Y, Cao M, Lu Z (1999) Dielectrophoresis of human red cells in microchips. Electrophoresis 20:1829–1831

    Article  CAS  Google Scholar 

  99. Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371

    Article  CAS  Google Scholar 

  100. Yang F, Yang X, Jiang H, Bulkhaults P, Wood P, Hrushesky W, Wang G (2010) Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics 4(013204):1–13

    Google Scholar 

  101. Pethig R, Menachery A, Pells S, Sousa PD (2010) Dielectrophoresis: a review of applications for stem cell research. J Biomed Biotechnol 2010:1–7. doi:10.1155/2010/182581

    Article  Google Scholar 

  102. Pethig R, Lee RS, Talary MS (2004) Cell physiometry tools based on dielectrophoresis. J Assoc Lab Automat 9(5):324–330

    Article  CAS  Google Scholar 

  103. Kang JH, Park J-K (2005) Cell separation technology. Asia Pacific Biotech News 9(21):1135–1146

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support provided by NSF CAREER 0644538 and stimulating conversations with Blanca Lapizco-Encinas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne R. Minerick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, S.K., Gencoglu, A. & Minerick, A.R. DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem 399, 301–321 (2011). https://doi.org/10.1007/s00216-010-4222-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4222-6

Keywords

Navigation