Skip to main content
Log in

On-line species-unspecific isotope dilution analysis in the picomolar range reveals the time- and species-depending mercury uptake in human astrocytes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In order to reveal the time-depending mercury species uptake by human astrocytes, a novel approach for total mercury analysis is presented, which uses an accelerated sample introduction system combined on-line with an inductively coupled plasma mass spectrometer equipped with a collision/reaction cell. Human astrocyte samples were incubated with inorganic mercury (HgCl2), methylmercury chloride (MeHgCl), and thimerosal. After 1-h incubation with Hg2+, cellular concentrations of 3 μM were obtained, whereas for organic species, concentrations of 14–18 μM could be found. After 24 h, a cellular accumulation factor of 0.3 was observed for the cells incubated with Hg2+, whereas the organic species both showed values of about 5. Due to the obtained steady-state signals, reliable results with relative standard deviations of well below 5 % and limits of detection in the concentration range of 1 ng L−1 were obtained using external calibration and species-unspecific isotope dilution analysis approaches. The results were further validated using atomic fluorescence spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, Steenhuisen F, Maxson P (2010) Atmos Environ 44:2487

    Article  CAS  Google Scholar 

  2. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Atmos Chem Phys 10:5951

    Article  CAS  Google Scholar 

  3. Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Atmos Environ 40:4048

    Article  CAS  Google Scholar 

  4. Krupp EM, Milne BF, Mestrot A, Meharg AA, Feldmann J (2008) Anal Bioanal Chem 390:1753

    Article  CAS  Google Scholar 

  5. Nevado JJB, Martin-Doimeadios RCR, Krupp EM, Bernardo FJG, Farinas NR, Moreno MJ, Wallace D, Roper MJP (2011) J Chromatogr A 1218:4545

    Article  Google Scholar 

  6. Gao Y, Shi ZM, Long Z, Wu P, Zheng CB, Hou XD (2012) Microchem J 103:1

    Article  CAS  Google Scholar 

  7. Janzen R, Schwarzer M, Sperling M, Vogel M, Schwerdtle T, Karst U (2011) Metallomics 3:847

    Article  CAS  Google Scholar 

  8. Trümpler S, Nowak S, Meermann B, Wiesmüller GA, Buscher W, Sperling M, Karst U (2009) Anal Bioanal Chem 395:1929

    Article  Google Scholar 

  9. Trümpler S, Lohmann W, Meermann B, Buscher W, Sperling M, Karst U (2009) Metallomics 1:87

    Article  Google Scholar 

  10. Kutscher DJ, Sanz-Medel A, Bettmer J (2012) Metallomics 4:807

    Article  CAS  Google Scholar 

  11. EFSA Panel on Contaminants in the Food Chain (CONTAM) (2012) EFSA J 10:2985

    Google Scholar 

  12. Clarkson TW, Magos L (2006) Crit Rev Toxicol 36:609

    Article  CAS  Google Scholar 

  13. Renzoni A, Zino F, Franchi E (1998) Environ Res 77:68

    Article  CAS  Google Scholar 

  14. Magos L (2001) J Appl Toxicol 21:1

    Article  CAS  Google Scholar 

  15. Barregard L, Rekic D, Horvat M, Elmberg L, Lundh T, Zachrisson O (2011) Toxicol Sci 120:499

    Article  CAS  Google Scholar 

  16. Dorea JG (2011) Neurochem Res 36:927

    Article  CAS  Google Scholar 

  17. Basu N, Stamler CJ, Loua KM, Chan HM (2005) Toxicol Appl Pharmacol 205:71

    Article  CAS  Google Scholar 

  18. Rodrigues JL, Serpeloni JM, Batista BL, Souza SS, Barbosa F (2010) Arch Toxicol 84:891

    Article  CAS  Google Scholar 

  19. Clevenger WL, Smith BW, Winefordner WD (1997) CRC Crit Rev Anal Chem 27:1

    Article  CAS  Google Scholar 

  20. Holtkamp M, Elseberg T, Wehe CA, Sperling M, Karst U (2013) J Anal Atom Spectrom 28:719

    Article  CAS  Google Scholar 

  21. Leopold K, Foulkes M, Worsfold P (2010) Anal Chim Acta 663:127

    Article  CAS  Google Scholar 

  22. Wehe CA, Bornhorst J, Holtkamp M, Sperling M, Galla HJ, Schwerdtle T, Karst U (2011) Metallomics 3:1291

    Article  CAS  Google Scholar 

  23. Houk RS, Fassel VA, Flesch GD, Svec HJ, Grav AL, Taylor CE (1980) Anal Chem 52:2283

    Article  CAS  Google Scholar 

  24. Pröfrock D, Prange A (2012) Appl Spectrosc 66:843

    Article  Google Scholar 

  25. Tanner SD, Baranov VI, Bandura DR (2002) Spectrochim Acta B 57:1361

    Article  Google Scholar 

  26. Beauchemin D, Specht AA (1997) Anal Chem 69:3183

    Article  CAS  Google Scholar 

  27. Specht AA, Beauchemin (1998) Anal Chem 70:1036

    Article  CAS  Google Scholar 

  28. Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) J Anal Atom Spectrom 13:1001

    Article  CAS  Google Scholar 

  29. Rodríguez-González P, Marchante-Gayón JM, García-Alonso JI, Sanz-Medel A (2005) Spectrochim Acta B 60:151

    Article  Google Scholar 

  30. Bornhorst J, Ebert F, Hartwig A, Michalke B, Schwerdtle T (2010) J Environ Monit 12:2062

    Article  CAS  Google Scholar 

  31. Drennen-Harris LR, Wongwilawan S, Tyson JF (2013) J Anal Atom Spectrom 28:259

    Article  Google Scholar 

  32. Boumans PWJM (1991) Spectrochim Acta B 46:431

    Article  Google Scholar 

  33. Rottmann L, Heumann KG (1994) Fresenius J Anal Chem 350:221

    Article  CAS  Google Scholar 

  34. Yu LL, Fassett JD, Guthrie WF (2002) Anal Chem 74:3887

    Article  CAS  Google Scholar 

  35. Blum JD, Bergquist BA (2007) Anal Bioanal Chem 388:353

    Article  CAS  Google Scholar 

  36. Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) Spectrochim Acta B 53:273

    Article  Google Scholar 

  37. Ni M, Li X, Yin Z, Sidoryk-Wegrzynowicz M, Jiang H, Farina M, Rocha JB, Syversen T, Aschner M (2011) Glia 59:810

    Article  Google Scholar 

  38. Pekny M, Nilsson M (2005) Glia 50:427

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hans-Joachim Galla from the Institute of Biochemistry, University of Münster for providing the human astrocyte cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehe, C.A., Pieper, I., Holtkamp, M. et al. On-line species-unspecific isotope dilution analysis in the picomolar range reveals the time- and species-depending mercury uptake in human astrocytes. Anal Bioanal Chem 406, 1909–1916 (2014). https://doi.org/10.1007/s00216-013-7608-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7608-4

Keywords

Navigation