Skip to main content
Log in

Quantification of soy isoflavones and their conjugative metabolites in plasma and urine: an automated and validated UHPLC-MS/MS method for use in large-scale studies

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The biotransformation of isoflavones by gut microbiota and by drug metabolizing enzymes plays a crucial role in the understanding of their potential health-promoting effects. The purpose of our work was to develop a simultaneous, sensitive, and robust automated ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to quantify the soy isoflavones daidzein and genistein, their conjugative metabolites, as well as their major microbial degradation products in order to provide a method for use in large clinical trials or animal studies. An automated, 96-well solid-phase extraction method was used to extract the isoflavone analytes from plasma and urine. Separation of genistein, daidzein, and 19 of its metabolites, including five glucuronides, seven sulfates, and two sulfoglucuronides, as well as five microbial metabolites, was achieved in less than 25 min using a sub-2 μm particle column and a gradient elution with acetonitrile/methanol/water as mobile phases. Analysis was performed under negative ionization electrospray MS via the multiple reaction monitoring (MRM). Validation was performed according to the analytical method validation guidelines of Food and Drug Administration (FDA) and International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) consisting of selectivity, accuracy, precision, linearity, limit of detection, recovery, matrix effect, and robustness. All validated parameters essentially matched the FDA and ICH requirements. The application of this method to a pharmacokinetic study in postmenopausal women showed that isoflavones are extensively metabolized in vivo. A robust automated analytical approach was developed, which allows the handling of large sample sizes but nevertheless provides detailed information on the isoflavone metabolite profile leading to a better understanding and interpretation of clinical and animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mortensen A, Kulling SE, Schwartz H, Rowland I, Ruefer CE, Rimbach G, Cassidy A, Magee P, Millar J, Hall WL, Birkved FK, Sorensen IK, Sontag G (2009) Mol Nutr Food Res 53:S266–S309

    Article  Google Scholar 

  2. Klein MA, Nahin RL, Messina MJ, Rader JI, Thompson LU, Badger TM, Dwyer JT, Kim YS, Pontzer CH, Starke-Reed PE, Weaver CM (2010) J Nutr 140:1192S–1204S

    Article  CAS  Google Scholar 

  3. Takeuchi S, Takahashi T, Sawada Y, Iida M, Matsuda T, Kojima H (2009) Biol Pharm Bull 32:195–202

    Article  CAS  Google Scholar 

  4. Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S (1999) J Nutr 129:399–405

    CAS  Google Scholar 

  5. Pugazhendhi D, Watson KA, Mills S, Botting N, Pope GS, Darbre PD (2008) J Endocrinol 197:503–515

    Article  CAS  Google Scholar 

  6. Kinjo J, Tsuchihashi R, Morito K, Hirose T, Aomori T, Nagao T, Okabe H, Nohara T, Masamune Y (2004) Biol Pharm Bull 27:185–188

    Article  CAS  Google Scholar 

  7. Ishii J, Hosoda K, Furuta T (2013) In: Preedy VR (ed) Isoflavones: chemistry analysis function and effects. Royal Society of Chemistry, London

    Google Scholar 

  8. Grace PB, Mistry NS, Carter MH, Leathem AJC, Teale P (2007) J Chromatogr B 853:138–146

    Article  CAS  Google Scholar 

  9. Kuklenyik Z, Ye X, Reich JA, Needham LL, Calafat AM (2004) J Chromatogr Sci 42:495–500

    Article  CAS  Google Scholar 

  10. Twaddle NC, Churchwell MI, Doerge DR (2002) J Chromatogr B 777:139–145

    Article  CAS  Google Scholar 

  11. US Department of Health and Human Services, Food and Drug Administration (2001) Guidance for industry: bioanalytical method validation

  12. The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (1994) Validation of analytical procedures: text and methodology

  13. Al-Maharik N, Botting NP (2010) J Label Compd Radiopharm 53:95–103

    Article  CAS  Google Scholar 

  14. Fairley B, Botting NP, Cassidy A (2003) Tetrahedron 59:5407–5410

    Article  CAS  Google Scholar 

  15. Al-Maharik N, Botting NP (2008) Eur J Org Chem 2008:5622–5629

    Article  Google Scholar 

  16. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  17. Rauha J-P, Vuorela H, Kostiainen R (2001) J Mass Spectrom 36:1269–1280

    Article  CAS  Google Scholar 

  18. Mallet CR, Lu Z, Mazzeo JR (2004) Rapid Commun Mass Spectrom 18:49–58

    Article  CAS  Google Scholar 

  19. Hopfgartner G, Varesio E, Tschäppät V, Grivet C, Bourgogne E, Leuthold LA (2004) J Mass Spectrom 39:845–855

    Article  CAS  Google Scholar 

  20. The Commission of the European Communities (2002) Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results

  21. Guy L, Védrine N, Urpi-Sarda M, Gil-Izquierdo A, Al-Maharik N, Boiteux J-P, Scalbert A, Rémésy C, Botting NP, Manach C (2008) Nutr Cancer 60:461–468

    Article  CAS  Google Scholar 

  22. Maubach J, Bracke ME, Heyerick A, Depypere HT, Serreyn RF, Mareel MM, De Keukeleire D (2003) J Chromatogr B 784:137–144

    Article  CAS  Google Scholar 

  23. Csanády GC, Oberste-Frielinghaus H, Semder BS, Baur CB, Schneider KS, Filser JF (2002) Arch Toxicol 76:299–305

    Article  Google Scholar 

  24. Hosoda K, Furuta T, Ishii K (2011) Drug Metab Dispos 39:1762–1767

    Article  CAS  Google Scholar 

  25. Chen L, Zhao X, Fang L, Games DE (2007) J Chromatogr A 1154:103–110

    Article  CAS  Google Scholar 

  26. Bayer T, Colnot T, Dekant W (2001) Toxicol Sci 62:205–211

    Article  CAS  Google Scholar 

  27. Dams R, Huestis MA, Lambert WE, Murphy CM (2003) J Am Soc Mass Spectrom 14:1290–1294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG), grant KU-1079/10-1. The project is part of the collaborative research project entitled IsoCross “Isoflavones: Cross-species comparison on metabolism, estrogen sensitivity, epigenetics, and carcinogenisis”. The authors thank Professor Achim Bub, Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, for providing the plasma and urine samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine E. Kulling.

Additional information

Nigel Botting passed away on 4 June 2011

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soukup, S.T., Al-Maharik, N., Botting, N. et al. Quantification of soy isoflavones and their conjugative metabolites in plasma and urine: an automated and validated UHPLC-MS/MS method for use in large-scale studies. Anal Bioanal Chem 406, 6007–6020 (2014). https://doi.org/10.1007/s00216-014-8034-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8034-y

Keywords

Navigation