Skip to main content
Log in

In situ DRIFT, Raman, and XRF implementation in a multianalytical methodology to diagnose the impact suffered by built heritage in urban atmospheres

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work addresses the evaluation of an innovative mutianalytical method to assess the conservation state of a fifteenth century palace house. With the goal of reducing the handicaps of field analysis, the in situ spectroscopic assessment, often based on the use of X-ray fluorescence and Raman spectrometers, was complemented by the use of diffuse reflectance infrared Fourier transform spectroscopy. In this manner, its usefulness as a diagnostic tool to discover the origin and mechanisms of the damage caused by atmospheric and infiltration water attacks were thoroughly examined. Moreover, the study was extended in the laboratory to increase the information obtained by nondestructive techniques. The results revealed a severe material loss caused by soluble salts. Thus, a noninvasive sampling method using cellulose patches was tested to study the amount and mobility of salts by means of ion chromatography. Finally, to establish the chemical degradation processes that are occurring in the palace, a chemometric analysis of the quantitative data as well as the construction of thermodynamic models was done to advise on the required restorative actions.

The different phases of the multianalytical method to assess the conservation state of built heritage

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Appolonia L, Vaudan D, Chatel V, Aceto M, Mirti P (2009) Anal Bioanal Chem 391:2005–2013

    Article  Google Scholar 

  2. Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM (2006) Anal Chim Acta 588:108–116

    Article  Google Scholar 

  3. Medina J, Rull F, Sanz A, Sanz C, Gazquez F (2013) Macla 17:73–74

    Google Scholar 

  4. Gómez-Laserna O, Olazabal MA, Morillas H, Prieto-Taboada N, Martinez-Arkarazo I, Arana G, Madariaga JM (2013) J Raman Spectrosc 44:1277–1284

    Article  Google Scholar 

  5. Andrikopoulos KS, Daniilia S, Roussel B, Janssens K (2006) J Raman Spectrosc 37:1026–1034

    Article  CAS  Google Scholar 

  6. Aramendia J, Gomez-Nubla L, Castro K, Martinez-Arkarazo I, Vega D, Sanz López de Heredia A, García Ibáñez de Opakua A, Madariaga JM (2012) J Raman Spectrosc 43:1111–1117

    Article  CAS  Google Scholar 

  7. Julleh M, Alalur J, Ahman R, Higeyuki S, Uzuki S (2007) Geochem J 41:415–428

    Article  Google Scholar 

  8. Arostegui J, Irabien MJ, Nieto F, Sangüesa J, Zuluaga MC (2001) Clays Clay Miner 49:529–539

    Article  CAS  Google Scholar 

  9. Prieto-Taboada N, Ibarrondo I, Gómez-Laserna O, Martínez-Arkarazo I, Olazabal MA, Madariaga JM (2013) J Hazard Mater 249:451–460

    Article  Google Scholar 

  10. Jehlička J, Vítek P, Edwards HGM, Hargreaves M, Čapoun T (2009) J Raman Spectrosc 40:1645–1651

    Article  Google Scholar 

  11. Kavkler K, Gunde-Cimerman N, Zalar P, Demsar A (2011) Polym Degrad Stab 96:574–580

    Article  CAS  Google Scholar 

  12. Navas N, Romero-Pastor J, Manzano E, Cardell C (2008) Anal Chim Acta 630:141–149

    Article  CAS  Google Scholar 

  13. Vetter W, Schreiner M (2011) e-Preserv Sci 8:10–22

    CAS  Google Scholar 

  14. Chércoles Asensio R, San Andrés Moya M, De la Roja JM, Gómez M (2009) Anal Bioanal Chem 395:2081–2096

    Article  Google Scholar 

  15. Genestar C, Pons C (2005) Anal Bioanal Chem 382:269–274

    Article  CAS  Google Scholar 

  16. Bicchieri M, Monti M, Piantanida G, Pinzari F, Sodo A (2011) Vib Spectrosc 55:267–272

    Article  CAS  Google Scholar 

  17. Prati S, Rosi F, Sciutto G, Mazzeo R, Magrini D, Sotiropoulou S, Van Bos M (2012) Microchem J 103:79–89

    Article  CAS  Google Scholar 

  18. Anselmi C, Presciutti F, Doherty B, Brunetti BG, Sgamellotti A, Miliani C (2011) Appl Phys 104:401–406

    Article  CAS  Google Scholar 

  19. Ricci C, Miliani C, Brunetti BG, Sgamellotti A (2006) Talanta 69:1221–1226

    Article  CAS  Google Scholar 

  20. Poli T, Elia A, Chiantore O (2009) e-Preserv Sci 6:174–179

    CAS  Google Scholar 

  21. Miliani C, Rosi F, Daveri F, Brunetti BG (2012) Appl Phys A 106:295–307

    Article  CAS  Google Scholar 

  22. Arrizabalaga I, Gomez-Laserna O, Aramendia J, Arana G, Madariaga JM (2014) Spectrochim Acta A 129:259–267

    Article  CAS  Google Scholar 

  23. Kortum G (1969) Reflection spectroscopy. Springer, Berlin

    Book  Google Scholar 

  24. Arrizabalaga I, Gomez-Laserna O, Aramendia J, Arana G, Madariaga JM (2014) Spectrochim Acta A 124:308–314

    Article  CAS  Google Scholar 

  25. Goudie AS, Viles HA (1997) Salt weathering hazards. Wiley, Chichester

    Google Scholar 

  26. Prieto-Taboada N, Isca C, Martínez-Arkarazo I, Casoli A, Olazabal MA, Arana G, Madariaga JM (2014) Environ Sci Pollut Res 21:12518–12529

    Article  CAS  Google Scholar 

  27. Dionísio A, Martinho E, Grangeia C, Almeida F (2012) Switzerland global stone congress. Trans Tech Publications, Pfaffikon, pp 170–177

    Google Scholar 

  28. E.V.E (2010) Mapa geológico del País Vasco. E.V.E, Beasain

    Google Scholar 

  29. Basque Government (2014) Agencia Vasca del agua, Seguimiento de ríos y Medioambiente. http://www.uragentzia.euskadi.eus/u81-0002/es/

  30. Arnold A, Zehnder K (1991) In: Cather S (ed) The conservation of wall paintings. The Getty Conservation Institute, Los Angeles, pp 103–135

    Google Scholar 

  31. Castro K, Perez-Alonso M, Rodriguez-Laso MD, Fernández LA, Madariaga JM (2005) Anal Bioanal Chem 382:248–258

    Article  CAS  Google Scholar 

  32. Pérez-Alonso M, Castro K, Madariaga JM (2006) Anal Chim Acta 571:121–128

    Article  Google Scholar 

  33. Maguregui M, Prieto-Taboada N, Trebolazabala J, Goienaga N, Arrieta N, Aramendia J, Gomez-Nubla L, Sarmiento A, Olivares M, Carrero JA, Martinez-Arkarazo I, Castro K, Arana G, Olazabal MA, Fernandez LA, Madariaga JM (2010) Congress of Chemistry for Cultural Heritage (ChemCH). pp 168–170

  34. Downs RT (2006) IMA 19th general meeting of the international mineralogical association in Kobe, Japan, p 117

  35. Prieto-Taboada N, Gómez-Laserna O, Martinez-Arkarazo I, Olazabal MA, Madariaga JM (2012) Ultrason Sonochem 19:1260–1265

    Article  CAS  Google Scholar 

  36. Puigdomenech I, Zagorodni A, Wang M, Muhammed M (2009) Program Medusa (make equilibrium diagrams using sophisticated algorithms). Royal Institute of Technology, Inorganic Materials Chemistry, Sweden

    Google Scholar 

  37. Bathurst RGC (1975) Carbonate sediments and their diagenesis. Developments in sedimentology. Elsevier, Amsterdam

    Google Scholar 

  38. Fregenal M, López Gómez J, Martín Chivelet J (2000) Ciencias de la Tierra. Diccionarios Oxford-Complutense. Complutense, Madrid

    Google Scholar 

  39. Korte EH, Roseler A (2005) Anal Bioanal Chem 382:1987–1992

    Article  CAS  Google Scholar 

  40. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, Weinheim

    Book  Google Scholar 

  41. Scwhertmann U, Taylor RM (1972) Clay Clay Miner 20:151–158

    Article  Google Scholar 

  42. Manning M (1988) Air pollution, acid rain and the environment: corrosion of building materials due to atmospheric pollution the United Kingdom. Springer, Dordrecht

    Google Scholar 

  43. Bai Y, Thompson GE, Martinez-Ramirez S, Brüeggerhoff S (2003) Sci Total Environ 302:247–251

    Article  CAS  Google Scholar 

  44. Agudo ER, Lubelli B, Sawdy A, Hees RV, Price C, Navarro CR (2011) J Environ Earth Sci 63:1475–1486

    Article  Google Scholar 

  45. Vázquez MA, Galán E, Ortiz P, Ortiz R (2013) J Constr Build Mater 45:95–105

    Article  Google Scholar 

  46. Jehlička J, Osterrothová K, Nedbalová L, Gunde-Cimerman N, Oren A (2014) 11th International GeoRaman Conference. p 5042

  47. Oren A (2013) Microbiol Lett 342:1–9

    Article  CAS  Google Scholar 

  48. Siegesmund S, Snethlage R (2011) Stone in architecture: properties, durability. Spinger, Heidelberg

    Book  Google Scholar 

  49. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the project DISILICA-1930 from the Spanish Ministry of Economy and Competitiveness (MINECO) (reference BIA2014-59124P) and the European Regional Development Fund (FEDER). O.G.-L. and I.A. gratefully acknowledge their predoctoral fellowships from the University of the Basque Country (UPV-EHU). N.P.-T. acknowledges her postdoctoral contract (UPV-EHU). Technical support provided by the X-Ray Service (Rocks and Minerals Unit) of SGIker (UPV/EHU, MICINN, GV/EJ, ERDF, and ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Gómez-Laserna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Laserna, O., Arrizabalaga, I., Prieto-Taboada, N. et al. In situ DRIFT, Raman, and XRF implementation in a multianalytical methodology to diagnose the impact suffered by built heritage in urban atmospheres. Anal Bioanal Chem 407, 5635–5647 (2015). https://doi.org/10.1007/s00216-015-8738-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8738-7

Keywords

Navigation