Skip to main content
Log in

Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s−1) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cunico RL, Gooding KM, Wehr T (1998) Basic HPLC and CE of biomolecules. Bay Bioanalytical Laboratory, Richmond

    Google Scholar 

  2. Human insulin receives FDA approval (1982). FDA Drug Bull 12(3):18–19

  3. Sackman JE, Kuchenreuther MJ (2015) The bullish outlook for biosimilars. BioPharm Int 28 (2)

  4. Mullard A (2015) 2014 FDA drug approvals. Nat Rev Drug Discov 14(2):77–81. doi:10.1038/nrd4545

    Article  CAS  Google Scholar 

  5. Novel new drugs 2014 summary (2015) www.fda.gov/drugs

  6. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    Article  CAS  Google Scholar 

  7. Gottschalk U (2008) Bioseparation in antibody manufacturing: the good, the bad and the ugly. Biotechnol Progr 24(3):496–503

    Article  CAS  Google Scholar 

  8. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Peer reviewed: monolithic LC columns. Anal Chem 73(15):420 A–429 A

    Article  CAS  Google Scholar 

  9. Zou H, Huang X, Ye M, Luo Q (2002) Monolithic stationary phases for liquid chromatography and capillary electrochromatography. J Chromatogr A 954(1–2):5–32

    Article  CAS  Google Scholar 

  10. Kirkland JJ, Truszkowski FA, Dilks CH, Engel GS (2000) Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules. J Chromatogr A 890(1):3–13

    Article  CAS  Google Scholar 

  11. Schuster SA, Wagner BM, Boyes BE, Kirkland JJ (2013) Optimized superficially porous particles for protein separations. J Chromatogr A 1315:118–126

    Article  CAS  Google Scholar 

  12. Sun G-Y, Shi Q-H, Sun Y (2004) Novel biporous polymeric stationary phase for high-speed protein chromatography. J Chromatogr A 1061(2):159–165

    Article  CAS  Google Scholar 

  13. Nelson DK, Marcus RK (2003) A novel stationary phase: capillary-channeled polymer (C-CP) fibers for HPLC separations of proteins. J Chromatogr Sci 41(9):475–479

    Article  CAS  Google Scholar 

  14. Nelson DM, Marcus RK (2006) Characterization of capillary-channeled copolymer fiber stationary phases for high-performance liquid chromatography protein separations: comparative analysis with a packed-bed column. Anal Chem 78(24):8462–8471

    Article  CAS  Google Scholar 

  15. Stanelle R, Marcus RK (2009) Nylon-6 capillary-channeled polymer (C-CP) fibers as a hydrophobic interaction chromatography stationary phase for the separation of proteins. Anal Bioanal Chem 393(1):273–281

    Article  CAS  Google Scholar 

  16. Randunu KM, Marcus RK (2012) Microbore polypropylene capillary channeled polymer (C-CP) fiber columns for rapid reversed-phase HPLC of proteins. Anal Bioanal Chem 404(3):721–729

    Article  CAS  Google Scholar 

  17. Marcus RK (2008) Use of polymer fiber stationary phases for liquid chromatography separations: part I—physical and chemical rationale. J Sep Sci 31(11):1923–1935

    Article  CAS  Google Scholar 

  18. Wang Z, Marcus RK (2014) Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations. J Chromatogr A 1351:82–89

    Article  CAS  Google Scholar 

  19. Marcus RK, Davis WC, Knippel BC, LaMotte L, Hill TA, Perahia D, Jenkins JD (2003) Capillary-channeled polymer fibers as stationary phases in liquid chromatography separations. J Chromatogr A 986(1):17–31

    Article  CAS  Google Scholar 

  20. Stanelle R, Mignanelli M, Brown P, Marcus RK (2006) Capillary-channeled polymer (C-CP) fibers as a stationary phase in microbore high-performance liquid chromatography columns. Anal Bioanal Chem 384(1):250–258

    Article  CAS  Google Scholar 

  21. Stanelle RD, Straut CM, Marcus RK (2007) Nylon-6 capillary-channeled polymer fibers as a stationary phase for the mixed-mode ion exchange/reversed-phase chromatography separation of proteins. J Chromatogr Sci 45(7):415–421

    Article  CAS  Google Scholar 

  22. Schadock-Hewitt AJ, Marcus RK (2014) Initial evaluation of protein A modified capillary-channeled polymer fibers for the capture and recovery of immunoglobulin G. J Sep Sci 37(5):495–504

    Article  CAS  Google Scholar 

  23. Schadock-Hewitt AJ, Pittman JJ, Christensen KA, Marcus RK (2014) Head group-functionalized poly(ethyleneglycol)–lipid (PEG–lipid) surface modification for highly selective analyte extractions on capillary-channeled polymer (C-CP) fibers. Analyst 139:2108–2113

    Article  CAS  Google Scholar 

  24. Schadock-Hewitt AJ, Marcus RK (2014) Loading characteristics and chemical stability of head group-functionalized PEG-lipid ligand tethers on polypropylene capillary-channeled polymer fibers. J Sep Sci 37:3595–3602

    Article  CAS  Google Scholar 

  25. Jiang L, Schadock-Hewitt AJ, Marcus RK (2015) Synthesis and evaluation of lipid tethered ligands (LTL) for surface functionalization of polypropylene capillary-channeled polymer (C-CP) fiber stationary phase. Analyst 140:1523–1534

    Article  CAS  Google Scholar 

  26. Jiang L, Marcus RK (2015) Biotin-functionalized poly(ethylene terephthalate) capillary-channeled polymer fibers as HPLC stationary phase for affinity chromatography. Anal Bioanal Chem 407(3):939–951

    Article  CAS  Google Scholar 

  27. Jiang L, Marcus RK (2015) Polyethylenimine modified poly(ethylene terephthalate) capillary channeled-polymer (C-CP) fibers for anion exchange chromatography of proteins. J Chromatogr A 1410:200–209

    Article  CAS  Google Scholar 

  28. Brown PJ, M. M, Sinclair K, Tucker E, Inam A (2004) Production, properties and potential applications of deep groove fiber. Presented at the Southeast Regional Meeting of the American Chemical Society

  29. Lewis DM (1994) Dyeability 1: nylon fibres. In: Brody H (ed) Synthetic fibre materials. Polymer science & technology series. Longman Group, Essex

    Google Scholar 

  30. Schadock-Hewitt AJ, Pittman JJ, Stevens KA, Marcus RK (2013) Comparison of two types of nylon 6 capillary-channeled polymer (C-CP) fiber stationary phases towards the separation of proteins via ion exchange chromatography. J Appl Polym Sci 128:1257–1265

    Article  CAS  Google Scholar 

  31. Leveque M (1928) The laws of convective heat transfer. Ann Min 13:284

    Google Scholar 

  32. Randunu KM, Marcus RK (2013) Initial evaluation of protein throughput and yield characteristics on nylon 6 capillary-channeled polymer (C-CP) fiber stationary phases by frontal analysis. Biotechnol Prog 29:1222–1229

    Article  CAS  Google Scholar 

  33. Wang Z, Marcus RK (2015) Roles of interstitial fraction and load linear velocity on the dynamic binding capacity of proteins on capillary-channeled polymer fiber columns. Biotechnol Prog 15:97–109

    Article  Google Scholar 

  34. Neue UD (1997) HPLC columns: theory, technology, and practice. Wiley-VCH, New York

    Google Scholar 

  35. Avny Y, Rebenfeld L (1986) Chemical modification of polyester fiber surfaces by amination reactions with multifunctional amines. J Appl Polym Sci 32(3):4009–4025

    Article  CAS  Google Scholar 

  36. Zhang R, Li Q, Gao Y, Li J, Huang Y, Song C, Zhou W, Ma G, Su Z (2014) Hydrophilic modification gigaporous resins with poly(ethylenimine) for high-throughput proteins ion-exchange chromatography. J Chromatogr A 1343:109–118

    Article  CAS  Google Scholar 

  37. Randunu JM, Dimartino S, Marcus RK (2012) Dynamic evaluation of polypropylene capillary-channeled fibers as a stationary phase in high performance liquid chromatography. J Sep Sci 35:3270–3280

    Article  CAS  Google Scholar 

  38. Kopaciewicz W, Rounds MA, Regnier FE (1985) Stationary phase contributions to retention in high-performance anion-exchange protein chromatography: ligand density and mixed mode effects. J Chromatogr 318(2):157–172

    Article  CAS  Google Scholar 

  39. DePhillips P, Lagerlund I, Farenmark J, Lenhoff AM (2004) Effect of spacer arm length on protein retention on a strong cation exchange adsorbent. Anal Chem 76:5816–5822

    Article  CAS  Google Scholar 

  40. Farkas T, Sepaniak MJ, Guiochon G (1996) Column radial homogeneity in high-performance liquid chromatography. J Chromatogr A 740(2):169–181

    Article  CAS  Google Scholar 

  41. Farkas T, Guiochon G (1997) Contribution of the radial distribution of the flow velocity to band broadening in HPLC columns. Anal Chem 69(22):4592–4600

    Article  CAS  Google Scholar 

  42. Miyabe K, Guiochon G (1999) Influence of column radial heterogeneity on peak fronting in linear chromatography. J Chromatogr A 857(1–2):69–87

    Article  CAS  Google Scholar 

  43. Goheen SC, Hilsenbeck JL (1998) High-performance ion-exchange chromatography and adsorption of plasma proteins. J Chromatogr A 816(1):89–96

    Article  CAS  Google Scholar 

  44. Lu XM, Figueroa A, Karger BL (1988) Intrinsic fluorescence and HPLC measurement of the surface dynamics of lysozyme adsorbed on hydrophobic silica. J Am Chem Soc 110(6):1978–1979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon the work supported by the National Science Foundation Division of Chemistry under grant CHE-1307078.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kenneth Marcus.

Additional information

Published in the topical collection Fiber-based Platforms for Bioanalytics with guest editors Antje J. Baeumner and R. Kenneth Marcus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Marcus, R.K. Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases. Anal Bioanal Chem 408, 1373–1383 (2016). https://doi.org/10.1007/s00216-015-9000-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9000-z

Keywords

Navigation