Skip to main content
Log in

Interspecies comparison of peptide substrate reporter metabolism using compartment-based modeling

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Peptide substrate reporters are fluorescently labeled peptides that can be acted upon by one or more enzymes of interest. Peptide substrates are readily synthesized and more easily separated than full-length protein substrates; however, they are often more rapidly degraded by peptidases. As a result, peptide reporters must be made resistant to proteolysis in order to study enzymes in intact cells and lysates. This is typically achieved by optimizing the reporter sequence in a single cell type or model organism, but studies of reporter stability in a variety of organisms are needed to establish the robustness and broader utility of these molecular tools. We measured peptidase activity toward a peptide substrate reporter for protein kinase B (Akt) in E. coli, D. discoideum, and S. cerevisiae using capillary electrophoresis with laser-induced fluorescence (CE-LIF). Using compartment-based modeling, we determined individual rate constants for all potential peptidase reactions and explored how these rate constants differed between species. We found the reporter to be stable in D. discoideum (t 1/2 = 82–103 min) and S. cerevisiae (t 1/2 = 279–314 min), but less stable in E. coli (t 1/2 = 21–44 min). These data suggest that the reporter is sufficiently stable to be used for kinase assays in eukaryotic cell types while also demonstrating the potential utility of compartment-based models in peptide substrate reporter design.

Cell lysates from several evolutionarily divergent species were incubated with a peptide substrate reporter, and compartment-based modeling was used to determine key steps in the metabolism of the reporter in each cell type

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3

Similar content being viewed by others

References

  1. Hardie DG. Peptide assay of protein kinases and use of variant peptides to determine recognition motifs. In: Walker J, Keyse S (eds) Stress response. Totowa: Humana Press; 2000. p. 191–201.

  2. Wu D, Sylvester JE, Parker LL, Zhou G, Kron SJ. Peptide reporters of kinase activity in whole cell lysates. Biopolymers. 2010;94:475–86. doi:10.1002/bip.21401.

    Article  CAS  Google Scholar 

  3. Yaron A, Carmel A, Katchalski-Katzir E. Intramolecularly quenched fluorogenic substrates for hydrolytic enzymes. Anal Biochem. 1979;95:228–35. doi:10.1016/0003-2697(79)90210-0.

    Article  CAS  Google Scholar 

  4. Shults MD, Imperiali B. Versatile fluorescence probes of protein kinase activity. J Am Chem Soc. 2003;125:14248–9. doi:10.1021/ja0380502.

    Article  CAS  Google Scholar 

  5. Kraft M, Radke D, Wieland GD, Zipfel PF, Horn U. A fluorogenic substrate as quantitative in vivo reporter to determine protein expression and folding of tobacco etch virus protease in Escherichia coli. Protein Expr Purif. 2007;52:478–84. doi:10.1016/j.pep.2006.10.019.

  6. Chen C-A, Yeh R-H, Lawrence DS. Design and synthesis of a fluorescent reporter of protein kinase activity. J Am Chem Soc. 2002;124:3840–1. doi:10.1021/ja017530v.

    Article  CAS  Google Scholar 

  7. Arkhipov SN, Berezovski M, Jitkova J, Krylov SN. Chemical cytometry for monitoring metabolism of a Ras-mimicking substrate in single cells. Cytometry. 2005;63A:41–7. doi:10.1002/cyto.a.20100.

    Article  CAS  Google Scholar 

  8. Wang Q, Cahill SM, Blumenstein M, Lawrence DS. Self-reporting fluorescent substrates of protein tyrosine kinases. J Am Chem Soc. 2006;128:1808–9. doi:10.1021/ja0577692.

    Article  CAS  Google Scholar 

  9. Phillips RM, Bair E, Lawrence DS, Sims CE, Allbritton NL. Measurement of protein tyrosine phosphatase activity in single cells by capillary electrophoresis. Anal Chem. 2013;85:6136–42. doi:10.1021/ac401106e.

    Article  CAS  Google Scholar 

  10. Turner AH, Lebhar MS, Proctor A, Wang Q, Lawrence DS, Allbritton NL. Rational design of a dephosphorylation-resistant reporter enables single-cell measurement of tyrosine kinase activity. ACS Chem Biol. 2016;11:355–62. doi:10.1021/acschembio.5b00667.

    Article  CAS  Google Scholar 

  11. Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JHM. Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem. 2002;277:24506–14. doi:10.1074/jbc.M110789200.

    Article  CAS  Google Scholar 

  12. Ni Q, Titov DV, Zhang J. Analyzing protein kinase dynamics in living cells with FRET reporters. Methods. 2006;40:279–86. doi:10.1016/j.ymeth.2006.06.013.

    Article  CAS  Google Scholar 

  13. Ng EX, Miller MA, Jing T, Chen C-H. Single cell multiplexed assay for proteolytic activity using droplet microfluidics. Biosens Bioelectron. 2016;81:408–14. doi:10.1016/j.bios.2016.03.002.

    Article  CAS  Google Scholar 

  14. Lee CL, Linton J, Soughayer JS, Sims CE, Allbritton NL. Localized measurement of kinase activation in oocytes of Xenopus laevis. Nat Biotechnol. 1999;17:759–62. doi:10.1038/11691.

  15. Bozinovski S, Cristiano BE, Marmy-Conus N, Pearson RB. The synthetic peptide RPRAATF allows specific assay of Akt activity in cell lysates. Anal Biochem. 2002;305:32–9. doi:10.1006/abio.2002.5659.

    Article  CAS  Google Scholar 

  16. Proctor A, Wang Q, Lawrence DS, Allbritton NL. Development of a peptidase-resistant substrate for single-cell measurement of protein kinase B activation. Anal Chem. 2012;84:7195–202. doi:10.1021/ac301489d.

    Article  CAS  Google Scholar 

  17. Tung CH, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 2000;60:4953–8.

    CAS  Google Scholar 

  18. Dragulescu-Andrasi A, Liang G, Rao J. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Bioconjug Chem. 2009;20:1660–6. doi:10.1021/bc9002508.

    Article  CAS  Google Scholar 

  19. Brown RB, Hewel JA, Emili A, Audet J. Single amino acid resolution of proteolytic fragments generated in individual cells. Cytometry A. 2010;77:347–55. doi:10.1002/cyto.a.20880.

    Article  Google Scholar 

  20. Yewdell JW, Reits E, Neefjes J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol. 2003;3:952–61. doi:10.1038/nri1250.

    Article  CAS  Google Scholar 

  21. Proctor A, Wang Q, Lawrence DS, Allbritton NL. Metabolism of peptide reporters in cell lysates and single cells. Analyst. 2012;137:3028–38. doi:10.1039/c2an16162a.

    Article  CAS  Google Scholar 

  22. Reits E, Griekspoor A, Neijssen J, Groothuis T, Jalink K, van Veelen P, et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity. 2003;18:97–108.

    Article  CAS  Google Scholar 

  23. Yang S, Proctor A, Cline LL, Houston KM, Waters ML, Allbritton NL. β-Turn sequences promote stability of peptide substrates for kinases within the cytosolic environment. Analyst. 2013;138:4305. doi:10.1039/c3an00874f.

    Article  CAS  Google Scholar 

  24. Gladfelter AS. How nontraditional model systems can save us. Mol Biol Cell. 2015;26:3687–9. doi:10.1091/mbc.E15-06-0429.

    Article  CAS  Google Scholar 

  25. Page MJ, Di Cera E. Evolution of peptidase diversity. J Biol Chem. 2008;283:30010–4. doi:10.1074/jbc.M804650200.

    Article  CAS  Google Scholar 

  26. Tamura Y, Niinobe M, Arima T, Okuda H, Fujii S. Aminopeptidases and arylamidases in normal and cancer tissues in humans. Cancer Res. 1975;35:1030–4.

    CAS  Google Scholar 

  27. Mainz ER, Serafin DS, Nguyen TT, Tarrant TK, Sims CE, Allbritton NL. Single cell chemical cytometry of Akt activity in rheumatoid arthritis and normal fibroblast-like synoviocytes in response to tumor necrosis factor α. Anal Chem. 2016;88:7786–92. doi:10.1021/acs.analchem.6b01801.

  28. Fey P, Dodson RJ, Basu S, Chisholm RL. One stop shop for everything Dictyostelium: dictyBase and the Dicty stock center in 2012. In: Eichinger L, Rivero F, editors. Dictyostelium discoideum protocols. Totowa: Humana Press; 2013. p. 59–92.

  29. Fey P, Kowal AS, Gaudet P, Pilcher KE, Chisholm RL. Protocols for growth and development of Dictyostelium discoideum. Nat Protoc. 2007;2:1307–16. doi:10.1038/nprot.2007.178.

  30. De Bernardo S, Weigele M, Toome V, Manhart K, Leimgruber W, Böhlen P, et al. Studies on the reaction of fluorescamine with primary amines. Arch Biochem Biophys. 1974;163:390–9.

    Article  Google Scholar 

  31. Kelley CT. Iterative methods for optimization. Philadelphia: SIAM; 1999.

    Book  Google Scholar 

  32. Alessi DR, Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev. 1998;8:55–62. doi:10.1016/S0959-437X(98)80062-2.

    Article  CAS  Google Scholar 

  33. Proctor A, Herrera-Loeza SG, Wang Q, Lawrence DS, Yeh JJ, Allbritton NL. Measurement of protein kinase B activity in single primary human pancreatic cancer cells. Anal Chem. 2014;86:4573–80. doi:10.1021/ac500616q.

    Article  CAS  Google Scholar 

  34. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001;292:288–90. doi:10.1126/science.1059497.

    Article  CAS  Google Scholar 

  35. Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 1999;18:2092–105. doi:10.1093/emboj/18.8.2092.

  36. Anderson DH. Compartmental modeling and tracer kinetics. New York: Springer Science & Business Media; 2013.

  37. Guan S, Price JC, Ghaemmaghami S, Prusiner SB, Burlingame AL. Compartment modeling for mammalian protein turnover studies by stable isotope metabolic labeling. Anal Chem. 2012;84:4014–21. doi:10.1021/ac203330z.

    Article  CAS  Google Scholar 

  38. Kuzmic P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem. 1996;237:260–73. doi:10.1006/abio.1996.0238.

    Article  CAS  Google Scholar 

  39. Petrera A, Lai ZW, Schilling O. Carboxyterminal protein processing in health and disease: key actors and emerging technologies. J Proteome Res. 2014;13:4497–504. doi:10.1021/pr5005746.

    Article  CAS  Google Scholar 

  40. Weimershaus M, Evnouchidou I, Saveanu L, van Endert P. Peptidases trimming MHC class I ligands. Curr Opin Immunol. 2013;25:90–6. doi:10.1016/j.coi.2012.10.001.

    Article  CAS  Google Scholar 

  41. Milo R, Jorgensen P, Moran U, Weber G, Springer M. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 2010;38:D750–3. doi:10.1093/nar/gkp889.

    Article  CAS  Google Scholar 

  42. Rawlings ND. A large and accurate collection of peptidase cleavages in the MEROPS database. Database (Oxford). 2009;2009:bap015. doi: 10.1093/database/bap015.

  43. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44:D343–50. doi:10.1093/nar/gkv1118.

    Article  Google Scholar 

  44. Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol Lett. 2013;346:11–9. doi:10.1111/1574-6968.12189.

    Article  CAS  Google Scholar 

  45. Krachler AM, Woolery AR, Orth K. Manipulation of kinase signaling by bacterial pathogens. J Cell Biol. 2011;195:1083–92. doi:10.1083/jcb.201107132.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Allbritton Laboratory at the University of North Carolina for generously providing advice and peptide standards, particularly Angela Proctor and Emilie Mainz for helpful discussions and their collaborator Qunzhao Wang for synthesis of the peptides. We also thank Jeremiah Marden and the Graf Laboratory at the University of Connecticut for assistance with the S. cerevisiae and E. coli cultures and lysis. This work was supported by Trinity College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Kovarik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tierney, A.J., Pham, N., Yang, K. et al. Interspecies comparison of peptide substrate reporter metabolism using compartment-based modeling. Anal Bioanal Chem 409, 1173–1183 (2017). https://doi.org/10.1007/s00216-016-0085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0085-9

Keywords

Navigation