Skip to main content
Log in

Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Small molecules are difficult to detect by conventional gold lateral flow assay (GLFA) sensitively because the test system must satisfy the conflict requirements between enough signal intensity and limited antibody (Ab) amount. In this work, a paired labels recognition (PLR)-based biosensor was designed by utilizing the specific binding of Ab and secondary antibody (anti-Ab) to enhance signal intensity and reduce antibody amount applied in small molecule detection. The PLR amplification system is fabricated by self-assembling the common detection probe, Au-labeled Ab (Au-Ab), and the signal booster, Au-labeled anti-Ab (Au-anti-Ab). Benefiting from this, a powerful network structure can be generated to accumulate numerous gold nanoparticles (GNPs) and thus significantly strengthen the signal intensity of detection. Therefore, a lower Ab amount will be applied to offer adequate signal strength, and further, the limit of detection will be obviously downregulated due to the more effective competition reaction. Using furazolidone (FZD) as a model analyte, we achieve a detection limit of as low as 1 ng mL−1, which was at least fivefold improved over that of the traditional GLFA. Furthermore, the practicality of this strategy was certificated in five different food samples.

A paired labels recognition (PLR) amplification system is fabricated by self-assembling the common detection probe, Au-labeled Ab (Au-Ab), and the signal booster, Au-labeled anti-Ab (Au-anti-Ab). In this novel strategy, owing to the recognition of both Ab and anti-Ab labeled on gold nanoparticles (GNPs), a powerful network structure can be generated to accumulate numerous GNPs and thus significantly strengthen the signal intensity of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q, et al. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta. 2014;181(13–14):1565–72. https://doi.org/10.1007/s00604-014-1247-0.

    Article  CAS  Google Scholar 

  2. Yao Y, Guo W, Zhang J, Wu Y, Fu W, Liu T, et al. Reverse fluorescence enhancement and colorimetric bimodal signal readout immunochromatography test strip for ultrasensitive large-scale screening and postoperative monitoring. ACS Appl Mater Interfaces. 2016;8(35):22963–70. https://doi.org/10.1021/acsami.6b08445.

    Article  CAS  Google Scholar 

  3. Hu J, Jiang YZ, Wu LL, Wu Z, Bi Y, Wong G, et al. Dual-signal readout nanospheres for rapid point-of-care detection of Ebola virus glycoprotein. Anal Chem. 2017; https://doi.org/10.1021/acs.analchem.7b02222.

  4. Chen Y, Sun J, Xianyu Y, Yin B, Niu Y, Wang S, et al. A dual-readout chemiluminescent-gold lateral flow test for multiplex and ultrasensitive detection of disease biomarkers in real samples. Nano. 2016;8(33):15205–12. https://doi.org/10.1039/c6nr04017a.

    CAS  Google Scholar 

  5. Yao L, Teng J, Zhu M, Zheng L, Zhong Y, Liu G, et al. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions. Biosens Bioelectron. 2016;85:331–6. https://doi.org/10.1016/j.bios.2016.05.031.

    Article  CAS  Google Scholar 

  6. Chen Y, Chen Q, Han M, Liu J, Zhao P, He L, et al. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens Bioelectron. 2016;79:430–4. https://doi.org/10.1016/j.bios.2015.12.062.

    Article  CAS  Google Scholar 

  7. Yu L, Li P, Ding X, Zhang Q. Graphene oxide and carboxylated graphene oxide: viable two-dimensional nanolabels for lateral flow immunoassays. Talanta. 2017;165:167–75. https://doi.org/10.1016/j.talanta.2016.12.042.

    Article  CAS  Google Scholar 

  8. Bahadır EB, Sezgintürk MK. Lateral flow assays: principles, designs and labels. TrAC Trends Anal Chem. 2016;82:286–306. https://doi.org/10.1016/j.trac.2016.06.006.

    Article  Google Scholar 

  9. Duan H, Huang X, Shao Y, Zheng L, Guo L, Xiong Y. Size-dependent Immunochromatographic assay with quantum dot Nanobeads for sensitive and quantitative detection of ochratoxin A in corn. Anal Chem. 2017;89(13):7062–8. https://doi.org/10.1021/acs.analchem.7b00869.

    Article  CAS  Google Scholar 

  10. Anfossi L, Baggiani C, Giovannoli C, D'Arco G, Giraudi G. Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal Bioanal Chem. 2013;405(2–3):467–80. https://doi.org/10.1007/s00216-012-6033-4.

    Article  CAS  Google Scholar 

  11. Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. TrAC Trends Anal Chem. 2014;55:81–93. https://doi.org/10.1016/j.trac.2013.11.007.

    Article  CAS  Google Scholar 

  12. Urusov AE, Petrakova AV, Zherdev AV, Dzantiev BB. “Multistage in one touch” design with a universal labelling conjugate for high-sensitive lateral flow immunoassays. Biosens Bioelectron. 2016;86:575–9. https://doi.org/10.1016/j.bios.2016.07.027.

    Article  CAS  Google Scholar 

  13. Taranova NA, Urusov AE, Sadykhov EG, Zherdev AV, Dzantiev BB. Bifunctional gold nanoparticles as an agglomeration-enhancing tool for highly sensitive lateral flow tests: a case study with procalcitonin. Microchim Acta. 2017;184(10):4189–95. https://doi.org/10.1007/s00604-017-2355-4.

    Article  CAS  Google Scholar 

  14. Wu Z, Fu Q, Yu S, Sheng L, Xu M, Yao C, et al. Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application. Biosens Bioelectron. 2016;85:657–63. https://doi.org/10.1016/j.bios.2016.05.074.

    Article  CAS  Google Scholar 

  15. Bu T, Huang Q, Yan L, Huang L, Zhang M, Yang Q, et al. Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth. Food Control. 2018;84:536–43. https://doi.org/10.1016/j.foodcont.2017.08.036.

    Article  CAS  Google Scholar 

  16. Liao J-Y, Li H. Lateral flow immunodipstick for visual detection of aflatoxin B1 in food using immuno-nanoparticles composed of a silver core and a gold shell. Microchim Acta. 2010;171(3–4):289–95. https://doi.org/10.1007/s00604-010-0431-0.

    Article  CAS  Google Scholar 

  17. Anfossi L, Di Nardo F, Giovannoli C, Passini C, Baggiani C. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement. Anal Bioanal Chem. 2013;405(30):9859–67. https://doi.org/10.1007/s00216-013-7428-6.

    Article  CAS  Google Scholar 

  18. Mak WC, Beni V, Turner APF. Lateral-flow technology: from visual to instrumental. TrAC Trends Anal Chem. 2016;79:297–305. https://doi.org/10.1016/j.trac.2015.10.017.

    Article  CAS  Google Scholar 

  19. Lu X, Liang X, Dong J, Fang Z, Zeng L. Lateral flow biosensor for multiplex detection of nitrofuran metabolites based on functionalized magnetic beads. Anal Bioanal Chem. 2016;408(24):6703–9. https://doi.org/10.1007/s00216-016-9787-2.

    Article  CAS  Google Scholar 

  20. Xu YP, Liu LQ, Li QS, Peng CF, Chen W, Xu CL. Development of an immunochromatographic assay for rapid detection of 1-aminohydantoin in urine specimens. Biomed Chromatogr. 2009;23(3):308–14. https://doi.org/10.1002/bmc.1115.

    Article  CAS  Google Scholar 

  21. Li S, Song J, Yang H, Cao B, Chang H, Deng A. An immunochromatographic assay for rapid and direct detection of 3-amino-5-morpholino-2-oxazolidone (AMOZ) in meat and feed samples. J Sci Food Agric. 2014;94(4):760–7. https://doi.org/10.1002/jsfa.6423.

    Article  CAS  Google Scholar 

  22. Vass M, Hruska K, Franek M. Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Veterinarni Medicina. 2008;53(9):469–500.

    Article  CAS  Google Scholar 

  23. Tang Y, Xu J, Wang W, Xiang J, Yang H. A sensitive immunochromatographic assay using colloidal gold–antibody probe for the rapid detection of semicarbazide in meat specimens. Eur Food Res Technol. 2010;232(1):9–16. https://doi.org/10.1007/s00217-010-1351-2.

    Article  Google Scholar 

  24. Zhang D, Li P, Yang Y, Zhang Q, Zhang W, Xiao Z, et al. A high selective immunochromatographic assay for rapid detection of aflatoxin B(1). Talanta. 2011;85(1):736–42. https://doi.org/10.1016/j.talanta.2011.04.061.

    Article  CAS  Google Scholar 

  25. Zhang D, Li P, Zhang Q, Zhang W. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts. Biosens Bioelectron. 2011;26(6):2877–82. https://doi.org/10.1016/j.bios.2010.11.031.

    Article  CAS  Google Scholar 

  26. Di Nardo F, Baggiani C, Giovannoli C, Spano G, Anfossi L. Multicolor immunochromatographic strip test based on gold nanoparticles for the determination of aflatoxin B1 and fumonisins. Microchim Acta. 2017;184(5):1295–304. https://doi.org/10.1007/s00604-017-2121-7.

    Article  Google Scholar 

  27. Gao H, Han J, Yang S, Wang Z, Wang L, Fu Z. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol. Anal Chim Acta. 2014;839:91–6. https://doi.org/10.1016/j.aca.2014.05.024.

    Article  CAS  Google Scholar 

  28. Zhang DH, Li PW, Zhang Q, Yang Y, Zhang W, Guan D, et al. Extract-free immunochromatographic assay for on-site tests of aflatoxin M-1 in milk. Anal Methods. 2012;4(10):3307–13. https://doi.org/10.1039/c2ay25205h.

    Article  CAS  Google Scholar 

  29. Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82. https://doi.org/10.1007/s00216-008-2287-2.

    Article  CAS  Google Scholar 

  30. Zhong Y, Chen Y, Yao L, Zhao D, Zheng L, Liu G, et al. Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening. Microchim Acta. 2016;183(6):1989–94. https://doi.org/10.1007/s00604-016-1812-9.

    Article  CAS  Google Scholar 

  31. Zhang MZ, Wang MZ, Chen ZL, Fang JH, Fang MM, Liu J, et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine. Anal Bioanal Chem. 2009;395(8):2591–9. https://doi.org/10.1007/s00216-009-3181-2.

    Article  CAS  Google Scholar 

  32. Tang Y, Xu X, Liu X, Huang X, Chen Y, Wang W, et al. Development of a lateral flow immunoassay (LFA) strip for the rapid detection of 1-aminohydantoin in meat samples. J Food Sci. 2011;76(6):T138–43. https://doi.org/10.1111/j.1750-3841.2011.02217.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21675127, 31501560), the New Century Excellent Talents in University (NCET-13-0483), and the Fundamental Research Funds for the Central Universities (2014YB093, 2452015257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daohong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, L., Zhao, B., Bu, T. et al. Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay. Anal Bioanal Chem 410, 3161–3170 (2018). https://doi.org/10.1007/s00216-018-1003-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1003-0

Keywords

Navigation