Skip to main content
Log in

A highly sensitive fluorescent probe based on the Michael addition mechanism with a large Stokes shift for cellular thiols imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel fluorescent probe IPY-MAL for thiols was developed based on imidazo[1,5-α]pyridine derivative, which was decorated with a maleimide group. The probe IPY-MAL showed a rapid response (30 s), high sensitivity and selectivity for thiols with a large Stokes shift (140 nm), which was triggered by the Michael addition reaction of thiols toward the C=C double bond of the maleimide group. Moreover, this probe IPY-MAL could quantitatively detect the concentrations of thiols ranging from 0 to 50 μM, and the detection limit was found to be as low as 28 nM. Cell imaging results indicated that the probe IPY-MAL could detect and visualize thiols in the living cells.

A novel imidazo[1,5-α]pyridine-based fluorescent probe was developed for sensitively monitoring and imaging thiols in living A549 cells with a large Stokes shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma T, Ding H, Xu HJ, Lv YL, Liu H, Wang HD, et al. Dual-functional probes for sequential thiol and redox homeostasis sensing in live cells. Analyst. 2015;140:322–9.

    Article  CAS  PubMed  Google Scholar 

  2. Chu PY, Liu MY. Amino acid cystine induces senescence and decelerates cell growth in melanoma. J Funct Foods. 2015;18:455–62.

    Article  CAS  Google Scholar 

  3. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57:145–55.

    Article  CAS  PubMed  Google Scholar 

  4. Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol. 2008;12:746–54.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Lu J, Ren X, Du Y, Zheng Y, Ioannou PV, et al. Oxidation of structural cysteine residues in thioredoxin 1 by aromaticarsenicals enhances cancer cell cytotoxicity caused by the inhibition of thioredoxin reductase 1. Free Radic Biol Med. 2015;89:192–200.

    Article  CAS  PubMed  Google Scholar 

  6. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468:790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kong F, Liu R, Chu R, Wang X, Xu K, Tang B. A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells. Chem Commun. 2013;49:9176–8.

    Article  CAS  Google Scholar 

  8. Niu LY, Guan YS, Chen YZ, Wu LZ, Tung CH, Yang QZ. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J Am Chem Soc. 2012;134:18928–31.

    Article  CAS  PubMed  Google Scholar 

  9. Janáky R, Varga V, Hermann A, Saransaari P, Oja SS. Mechanisms of L-cysteine neurotoxicity. Neurochem Res. 2000;25:1397–405.

    Article  PubMed  Google Scholar 

  10. Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res. 2016;13:952–63.

    Article  CAS  PubMed  Google Scholar 

  11. Nekrassova O, Lawrence NS, Compton RG. Analytical determination of homocysteine: a review. Talanta. 2003;6:1085–95.

    Article  CAS  Google Scholar 

  12. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346:476–83.

    Article  CAS  PubMed  Google Scholar 

  13. Forman HJ, Zhang HQ, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med. 2009;30:1–12.

    Article  CAS  Google Scholar 

  14. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-acetyl-cysteine a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7:355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu C, Fan D, Zhou C, Liu Y, Wang E. Colorimetric strategy for highly sensitive and selective simultaneous detection of histidine and cysteine based on G-quadruplex-Cu(II) metalloenzyme. Anal Chem. 2016;88:2899–903.

    Article  CAS  PubMed  Google Scholar 

  16. Yan Z, Guang S, Xu H, Liu X. An effective real-time colorimeteric sensor for sensitive and selective detection of cysteine under physiological conditions. Analyst. 2011;136:1916–21.

    Article  CAS  PubMed  Google Scholar 

  17. Ivanov AV, Virus ED, Luzyanin BP, Kubatiev AA. Capillary electrophoresis coupled with 1,1′-thiocarbonyldiimidazole derivatization for the rapid detection of total homocysteine and cysteine in human plasma. J Chromatogr B. 2015;1004:30–6.

    Article  CAS  Google Scholar 

  18. Liu LP, Yin ZJ, Yang ZS. A L-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode. Bioelectrochemistry. 2010;79:84–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Li L, Liu S, Ma C, Zhang S. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1. J Am Chem Soc. 2008;130:10846–7.

    Article  CAS  PubMed  Google Scholar 

  20. Borowczyk K, Wyszczelska-Rokiel M, Kubalczyk P, Glowacki P. Simultaneous determination of albumin and low-molecular-mass thiols in plasma by HPLC with UV detection. J Chromatogr B. 2015;981:57–64.

    Article  CAS  Google Scholar 

  21. Childs S, Haroune N, Williams L. Determination of cellular glutathione: glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection. J Chromatogr A. 2016;1437:67–73.

    Article  CAS  PubMed  Google Scholar 

  22. Jin XL, Wu SP, She MY, Jia YF, Hao LK, Yin B, et al. Novel fluorescein-based fluorescent probe for detecting H2S and its real applications in blood plasma and biological imaging. Anal Chem. 2016;88(22):11253–60.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng D, Pan Y, Wang L, Zeng Z, Yuan L, Zhang X, et al. Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe. J Am Chem Soc. 2017;139:285–92.

    Article  CAS  PubMed  Google Scholar 

  24. Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Discerning the chemistry in individual organelles with small-molecule fluorescent probes. Angew Chem Int Ed. 2016;55:13658–99.

    Article  CAS  Google Scholar 

  25. Li HM, Wang CL, She MY, Zhu YL, Zhang JD, Yang Z, et al. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change. Anal Chim Acta. 2015;900:97–102.

    Article  CAS  PubMed  Google Scholar 

  26. Wei M, Yin P, Shen Y, Zhang L, Deng J, Xue S, et al. A new turn-on fluorescent probe for selective detection of glutathione and cysteine in living cells. Chem Commun. 2013;49(41):4640–2.

    Article  CAS  Google Scholar 

  27. Chen S, Hou P, Zhou B, Song X, Wu J, Zhang H, et al. A colorimetric and ratiometric fluorescent probe for Cu2+ with a large red shift and its imaging in living cells. RSC Adv. 2013;3:11543–6.

    Article  CAS  Google Scholar 

  28. Liu XJ, Gao L, Yang L, Zou LF, Chen WQ, Song XZ. A phthalimide-based fluorescent probe for thiol detection with a large Stokes shift. RSC Adv. 2015;5:18177–82.

    Article  CAS  Google Scholar 

  29. Yang Z, Zhao N, Sun Y, Miao F, Liu Y, Liu X, et al. Highly selective red- and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem Commun. 2012;48(28):3442–4.

    Article  CAS  Google Scholar 

  30. Ma Y, Liu S, Yang H, Wu Y, Yang C, Liu X, et al. Water-soluble phosphorescent iridium(III) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells. J Mater Chem. 2011;21:18974–82.

    Article  CAS  Google Scholar 

  31. Mei J, Wang YJ, Tong JQ, Wang J, Qin AJ, Sun JZ, et al. Discriminatory detection of cysteine and homocysteine based on dialdehyde-functionalized aggregation-induced emission fluorophores. Chem Eur J. 2013;19(2):612–9.

    Article  CAS  Google Scholar 

  32. Das P, Mandal AK, Chandar NB, Baidya M, Bhatt HB, Ganguly B, et al. New chemodosimetric reagents as ratiometric probes for cysteine and homocysteine and possible detection in living cells and in blood plasma. Chem Eur J. 2012;18:15382–93.

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Li X, Wu Y, Gao W, Bai R. A ruthenium(II) complex with environment-responsive dual emission and its application in the detection of cysteine/homocysteine. Dalton Trans. 2012;41:13292–7.

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Li B, Zhao W, Zhang X, Luo X, Corkins ME, et al. Two-photon near infrared fluorescent turn-on probe toward cysteine and its imaging applications. ACS Sensors. 2016;1:882–7.

    Article  CAS  Google Scholar 

  35. Zhu B, Guo B, Zhao Y, Zhang B, Du B. A highly sensitive ratiometric fluorescent probe with a large emission shift for imaging endogenous cysteine in living cells. Biosens Bioelectron. 2014;55:72–5.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Wang J, Liu J, Ning L, Zhu X, Yu B, et al. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells. Anal Chem. 2015;87:4856–63.

    Article  CAS  PubMed  Google Scholar 

  37. Xie H, Li X, Zhao L, Han L, Zhao W, Chen X. Electrochemiluminescence performance of nitroolefin-based fluorescein in different solutions and its application for the detection of cysteine. Sensors Actuators B Chem. 2016;222:226–31.

    Article  CAS  Google Scholar 

  38. Yue Y, Yin C, Huo F, Chao J, Zhang Y. Thiol-chromene click chemistry: a turn-on fluorescent probe for specific detection of cysteine and its application in bioimaging. Sensors Actuators B Chem. 2016;223:496–500.

    Article  CAS  Google Scholar 

  39. Zhang C, Zhang G, Feng L, Li J. A ratiometric fluorescent probe for sensitive and selective detection of hydrogen sulfide and its application for bioimaging. Sensors Actuators B Chem. 2015;216:412–7.

    Article  CAS  Google Scholar 

  40. Pires MM, Chmielewski J. Fluorescence imaging of cellular gluathiane using a latent rhodamine. Org Lett. 2008;10:837–40.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu B, Zhang X, Li Y, Wang P, Zhang H, Zhuang X. A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications. Chem Commun. 2010;46:5710–2.

    Article  CAS  Google Scholar 

  42. Tang B, Yin L, Wang X, Chen Z, Tong L, Xu K. The barrier to enantiomerization and dynamic resolution of N-Boc-2-lithiopiperidine and the effect of TMEDA. Chem Commun. 2009;35:5293–5.

    Article  CAS  Google Scholar 

  43. Wang H, Zhou G, Chen X. An iminofluorescein-Cu2+ ensemble probe for selective detection of thiols. Sensors Actuators B Chem. 2013;176:698–703.

    Article  CAS  Google Scholar 

  44. Zhang YL, Shao XM, Wang Y, Pan FC, Kang RX, Peng FF, et al. Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells. Chem Commun. 2015;51:4245–8.

    Article  CAS  Google Scholar 

  45. Chen S, Li HM, Hou P. A novel imidazo[1,5-α]pyridine-based fluorescent probe with a large stokes shift for imaging hydrogen sulfide. Sensors Actuators B Chem. 2018;256:1086–92.

    Article  CAS  Google Scholar 

  46. Chen S, Li HM, Hou P. Imidazo[1,5-α]pyridine-derived fluorescent turn-on probe for cell imaging with a large Stokes shift. Tetrahedron Lett. 2017;58:2654–7.

    Article  CAS  Google Scholar 

  47. Chen S, Li HM, Hou P. A large Stokes shift fluorescent probe for sensing of thiophenols based on imidazo[1,5-α]pyridine in both aqueous medium and living cells. Anal Chim Acta. 2017;993:63–70.

    Article  CAS  PubMed  Google Scholar 

  48. Rao B, Simpson C, Lin H, Liang LY, Gu BH. Determination of thiol functional groups on bacteria and natural organic matter in environmental systems. Talanta. 2014;119:240–7.

    Article  CAS  PubMed  Google Scholar 

  49. Qu LJ, Yin CX, Huo FJ, Li JF, Chao JB, Zhang YB. A maleimide-based thiol fluorescent probe and its application for bioimaging. Sensors Actuators B Chem. 2014;195:246–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2017167), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Hou, P., Wang, J. et al. A highly sensitive fluorescent probe based on the Michael addition mechanism with a large Stokes shift for cellular thiols imaging. Anal Bioanal Chem 410, 4323–4330 (2018). https://doi.org/10.1007/s00216-018-1082-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1082-y

Keywords

Navigation