Skip to main content
Log in

Evidence for different in vitro oligomerization behaviors of synthetic hIAPP obtained from different sources

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Type 2 diabetes is characterized by the aggregation of human islet amyloid polypeptide (hIAPP), from monomer to amyloid deposits that are made of insoluble fibrils. Discrepancies concerning the nature of formed species or oligomerization kinetics among reported in vitro studies on hIAPP aggregation process have been highlighted. In this work, we investigated if the sample itself could be at the origin of those observed differences. To this aim, four hIAPP samples obtained from three different sources or suppliers have been analyzed and compared by ThT fluorescence spectroscopy and by two recently developed techniques, capillary electrophoresis (CE), and ESI-IMS-QToF-MS. Lots provided by the same supplier were shown to be very similar whatever the analytical technique used to characterize them. In contrast, several critical differences could be pointed out for hIAPP provided by different suppliers. We demonstrated that in several samples, some oligomerized peptides (e.g., dimer) were already present upon reception. Purity was also different, and the proneness of the peptide solution to form fibrils in vitro within 24 h could vary considerably from one sample source to another but not from lot to lot of the same source. All those results demonstrate that the initial state of conformation, oligomerization, and quality of the hIAPP can greatly impact the aggregation kinetics, and thus the information provided by these in vitro tests. Finally, a careful selection of the peptide batch and source is mandatory to perform relevant in vitro studies on hIAPP oligomerization and to screen new molecules modulating this pathological process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO (2019) Diabetes. https://www.who.int/health-topics/diabetes. Accessed 6 Oct 2019.

  2. Pillay K, Govender P. Amylin uncovered: a review on the polypeptide responsible for type II diabetes. Biomed Res Int. 2013;2013:826706. https://doi.org/10.1155/2013/826706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Higham CE, Hull RL, Lawrie L, Shennan KI, Morris JF, Birch NP, et al. Processing of synthetic pro-islet amyloid polypeptide (proIAPP) “amylin” by recombinant prohormone convertase enzymes, PC2 and PC3, in vitro. Eur J Biochem. 2000;267:4998–5004.

    Article  CAS  Google Scholar 

  4. Haataja L, Gurlo T, Huang CJ, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev. 2008;29:303–16. https://doi.org/10.1210/er.2007-0037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeong HR, An SS. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus. Clin Interv Aging. 2015;10:1873–9. https://doi.org/10.2147/CIA.S95297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen PT, Andraka N, De Carufel CA, Bourgault S. Mechanistic contributions of biological cofactors in islet amyloid polypeptide amyloidogenesis. J Diabetes Res. 2015;2015:515307. https://doi.org/10.1155/2015/515307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bedrood S, Li Y, Isas JM, Hegde BG, Baxa U, Haworth IS, et al. Fibril structure of human islet amyloid polypeptide. J Biol Chem. 2012;287:5235–41. https://doi.org/10.1074/jbc.M111.327817.

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann A, Caillon L, Salazar Vazquez LS, Spath P-A, Carlier L, Khemtémourian L, et al. Time dependence of NMR observables reveals salient differences in the accumulation of early aggregated species between human islet amyloid polypeptide and amyloid-β. Phys Chem Chem Phys. 2018. https://doi.org/10.1039/C7CP07516B.

  9. Abedini A, Plesner A, Cao P, Ridgway Z, Zhang J, Tu LH, et al. Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. Elife. 2016;5:e12977. https://doi.org/10.7554/eLife.12977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen C-H, Yao T, Zhang Q, He Y-M, Xu L-H, Zheng M, et al. Influence of trehalose on human islet amyloid polypeptide fibrillation and aggregation. RSC Adv. 2016;6:15240–6. https://doi.org/10.1039/C5RA27689F.

    Article  CAS  Google Scholar 

  11. Azriel R, Gazit E. Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem. 2001;276:34156–61. https://doi.org/10.1074/jbc.M102883200.

    Article  CAS  PubMed  Google Scholar 

  12. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, et al. Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol. 2005;151:229–38. https://doi.org/10.1016/j.jsb.2005.06.006.

    Article  CAS  PubMed  Google Scholar 

  13. Pilkington EH, Xing Y, Wang B, Kakinen A, Wang M, Davis TP, et al. Effects of protein Corona on IAPP amyloid aggregation, fibril remodelling, and cytotoxicity. Sci Rep. 2017;7:2455. https://doi.org/10.1038/s41598-017-02597-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sebastiao M, Quittot N, Bourgault S. Thioflavin T fluorescence to analyse amyloid formation kinetics: measurement frequency as a factor explaining irreproducibility. Anal Biochem. 2017;532:83–6. https://doi.org/10.1016/j.ab.2017.06.007.

    Article  CAS  PubMed  Google Scholar 

  15. Young LM, Cao P, Raleigh DP, Ashcroft AE, Radford SE. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J Am Chem Soc. 2014;136:660–70. https://doi.org/10.1021/ja406831n.

    Article  CAS  PubMed  Google Scholar 

  16. Fortin JS, Benoit-Biancamano M-O. Inhibition of islet amyloid polypeptide aggregation and associated cytotoxicity by nonsteroidal anti-inflammatory drugs. Can J Physiol Pharmacol. 2016;94:35–48. https://doi.org/10.1139/cjpp-2015-0117.

    Article  CAS  PubMed  Google Scholar 

  17. Gong H, Zhang X, Cheng B, Sun Y, Li C, Li T, et al. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes. PLoS One. 2013;8:e54198. https://doi.org/10.1371/journal.pone.0054198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bram Y, Frydman-Marom A, Yanai I, Gilead S, Shaltiel-Karyo R, Amdursky N, et al. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci Rep. 2014;4: SICI 4267. https://doi.org/10.1038/srep04267.

  19. Riba I, Barran PE, Cooper GJS, Unwin RD. On the structure of the copper-amylin complex. Int J Mass Spectrom. 2015;391:47–53. https://doi.org/10.1016/j.ijms.2015.09.001.

    Article  CAS  Google Scholar 

  20. Cheng B, Gong H, Li X, Sun Y, Zhang X, Chen H, et al. Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochem Biophys Res Commun. 2012;419:495–9. https://doi.org/10.1016/J.BBRC.2012.02.042.

    Article  CAS  PubMed  Google Scholar 

  21. Patel HR, Pithadia AS, Brender JR, Fierke CA, Ramamoorthy A. In search of aggregation pathways of IAPP and other amyloidogenic proteins: finding answers through NMR spectroscopy. J Phys Chem Lett. 2014;5:1864–70. https://doi.org/10.1021/jz5001775.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffmann A, Saravanan MS, Lequin O, Killian JA, Khemtemourian L. A single mutation on the human amyloid polypeptide modulates fibril growth and affects the mechanism of amyloid-induced membrane damage. Biochim Biophys Acta Biomembr. 2018. https://doi.org/10.1016/J.BBAMEM.2018.02.018.

  23. Li H, Ha E, Donaldson RP, Jeremic AM, Vertes A. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Anal Chem. 2015;87:9829–37. https://doi.org/10.1021/acs.analchem.5b02217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ, Tu LH, et al. Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry. Nat Chem. 2015;7:73–81. https://doi.org/10.1038/nchem.2129.

    Article  CAS  PubMed  Google Scholar 

  25. Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ, Ashcroft AE, et al. ESI-IMS-MS: a method for rapid analysis of protein aggregation and its inhibition by small molecules. Methods. 2016;95:62–9. https://doi.org/10.1016/j.ymeth.2015.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dupuis NF, Wu C, Shea JE, Bowers MT. The amyloid formation mechanism in human IAPP: dimers have beta-strand monomer-monomer interfaces. J Am Chem Soc. 2011;133:7240–3. https://doi.org/10.1021/ja1081537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marek PJ, Patsalo V, Green DF, Raleigh DP. Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry. 2012;51:8478–90. https://doi.org/10.1021/bi300574r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suzuki Y, Brender JR, Hartman K, Ramamoorthy A, Marsh EN. Alternative pathways of human islet amyloid polypeptide aggregation distinguished by (19)f nuclear magnetic resonance-detected kinetics of monomer consumption. Biochemistry. 2012;51:8154–62. https://doi.org/10.1021/bi3012548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suvorina MY, Selivanova OM, Grigorashvili EI, Nikulin AD, Marchenkov VV, Surin AK, et al. Studies of polymorphism of amyloid-β 42 peptide from different suppliers. J Alzheimers Dis. 2015;47:583–93. https://doi.org/10.3233/JAD-150147.

    Article  CAS  PubMed  Google Scholar 

  30. Verpillot R, Otto M, Klafki H, Taverna M. Simultaneous analysis by capillary electrophoresis of five amyloid peptides as potential biomarkers of Alzheimer’s disease. J Chromatogr A. 2008;1214:157–64. https://doi.org/10.1016/j.chroma.2008.10.051.

    Article  CAS  PubMed  Google Scholar 

  31. Berardet C, Kaffy J, Ongeri S, Taverna M. A capillary electrophoresis method to investigate the oligomerization of the human islet amyloid polypeptide involved in type 2 diabetes. J Chromatogr A. 2018. https://doi.org/10.1016/j.chroma.2018.10.006.

  32. Richardson K, Langridge D, Giles K. Fundamentals of travelling wave ion mobility revisited: I. Smoothly moving waves. Int J Mass Spectrom. 2018;428:71–80. https://doi.org/10.1016/j.ijms.2018.03.007.

    Article  CAS  Google Scholar 

  33. Van der Rest G, Rezaei H, Halgand F. Monitoring conformational landscape of ovine prion protein monomer using ion mobility coupled to mass spectrometry. J Am Soc Mass Spectrom. 2017;28:303–14. https://doi.org/10.1007/s13361-016-1522-x.

    Article  CAS  PubMed  Google Scholar 

  34. Van der Rest G, Halgand F. Size exclusion chromatography-ion mobility-mass spectrometry coupling: a step toward structural biology. J Am Soc Mass Spectrom. 2017;28:2519–22. https://doi.org/10.1007/s13361-017-1810-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissement d’Avenir” program, through the “IDI 2015” project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02. This work was also supported by the DIM analytics from the Région Ile de France for MOBICS project funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Taverna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berardet, C., Kaffy, J., Halgand, F. et al. Evidence for different in vitro oligomerization behaviors of synthetic hIAPP obtained from different sources. Anal Bioanal Chem 412, 3103–3111 (2020). https://doi.org/10.1007/s00216-020-02560-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02560-5

Keywords

Navigation