Skip to main content

Advertisement

Log in

Rapid isolation of lentivirus particles from cell culture media via a hydrophobic interaction chromatography method on a polyester, capillary-channeled polymer fiber stationary phase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lentiviruses are increasingly used as gene delivery vehicles for vaccines and immunotherapies. However, the purification of clinical-grade lentivirus vectors for therapeutic use is still troublesome and limits preclinical and clinical experiments. Current purification methods such as ultracentrifugation and ultrafiltration are time consuming and do not remove all of the impurities such as cellular debris, membrane fragments, and denatured proteins from the lentiviruses. The same challenges exist in terms of their analytical characterization. Presented here is the novel demonstration of the chromatographic isolation of virus particles from culture media based on the hydrophobicity characteristics of the vesicles. A method was developed to isolate lentivirus from media using a hydrophobic interaction chromatography (HIC) method performed on a polyester, capillary-channeled polymer (PET C-CP) stationary phase and a standard liquid chromatography apparatus. The method is an extension of the approach developed in this laboratory for the isolation of extracellular vesicles (EVs). Quantitative polymerase chain reaction (qPCR) was used to verify and quantify lentiviruses in elution fractions. Load and elution mobile phase compositions were optimized to affect high efficiency and throughput. The process has been visualized via scanning electron microscopy (SEM) of the fiber surfaces following media injection, the elution of proteinaceous material, and the elution of lentiviruses. This effort has yielded a rapid (<10 min), low-cost (< $15 per column, providing multiple separations), and efficient method for the isolation/purification of lentivirus particles from cell culture media at the analytical scale.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nasri M, Karimi A, Farsani MA. Production, purification and titration of a lentivirus-based vector for gene delivery purposes. Cytotechnology. 2014;66(6):1031–8.

    Article  CAS  Google Scholar 

  2. Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1(1):241–5.

    Article  CAS  Google Scholar 

  3. Coutant F, Frenkiel MP, Despres P, Charneau P. Protective antiviral immunity conferred by a nonintegrative lentiviral vector-based vaccine. PLoS One. 2008;3(12):e3973.

    Article  Google Scholar 

  4. An M, Zou X, Wang Q, Zhao X, Wu J, Xu LM, et al. High-confidence de novo peptide sequencing using positive charge derivatization and tandem MS spectra merging. Anal Chem. 2013;85(9):4530–7.

    Article  CAS  Google Scholar 

  5. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818–23.

    Article  CAS  Google Scholar 

  6. Oldham RAA, Berinstein EM, Medin JA. Lentiviral vectors in cancer immunotherapy. Immunotherapy. 2015;7(3):271–84.

    Article  CAS  Google Scholar 

  7. Breckpot K, Aerts JL, Thielemans K. Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther. 2007;14(11):847–62.

    Article  CAS  Google Scholar 

  8. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al. Gene therapy leaves a vicious cycle. Front Oncol. 2019;9:297.

    Article  Google Scholar 

  9. Lundstrom K. Viral vectors in gene therapy. Diseases. 2018;6(2):42.

    Article  Google Scholar 

  10. Lesch HP, Laitinen A, Peixoto C, Vicente T, Makkonen KE, Laitinen L, et al. Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors. Gene Ther. 2011;18(6):531–8.

    Article  CAS  Google Scholar 

  11. Papanikolaou E, Kontostathi G, Drakopoulou E, Georgomanoli M, Stamateris E, Vougas K, et al. Characterization and comparative performance of lentiviral vector preparations concentrated by either one-step ultrafiltration or ultracentrifugation. Virus Res. 2013;175(1):1–11.

    Article  CAS  Google Scholar 

  12. Boroujeni ME, Gardaneh M. The superiority of sucrose cushion centrifugation to ultrafiltration and PEGylation in generating high-titer lentivirus particles and transducing stem cells with enhanced efficiency. Mol Biotechnol. 2018;60(3):185–93.

    Article  CAS  Google Scholar 

  13. Yamada K, McCarty DM, Madden VJ, Walsh CE. Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. Biotechniques. 2003;34(5):1074–80.

    Article  CAS  Google Scholar 

  14. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis-virus G glycoprotein pseudotyped retroviral vectors - concentration to very high-titer and efficient gene-transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci. 1993;90(17):8033–7.

    Article  CAS  Google Scholar 

  15. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol. 2007;36(3):184–204.

    Article  CAS  Google Scholar 

  16. Segura MM, Garnier A, Durocher Y, Coelho H, Kamen A. Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnol Bioeng. 2007;98(4):789–99.

    Article  CAS  Google Scholar 

  17. Heider S, Muzard J, Zaruba M, Metzner C. Integrated method for purification and single-particle characterization of lentiviral vector systems by size exclusion chromatography and tunable resistive pulse sensing. Mol Biotechnol. 2017;59(7):251–9.

    Article  CAS  Google Scholar 

  18. Jiang W, Hua R, Wei M, Li C, Qiu Z, Yang X, et al. An optimized method for high-titer lentivirus preparations without ultracentrifugation. Sci Rep. 2015;5:13875–83.

    Article  Google Scholar 

  19. Aguilar PP, Reiter K, Steppert P, Jungbauer A. Performance of chromatography beads, monoliths and membrane adsorbers in the purification of enveloped virus-like particles. Abstr Pap Am Chem Soc. 2019;257:1.

    Google Scholar 

  20. Roque ACA, Pina AS, Azevedo AM, Aires-Barros R, Jungbauer A, Di Profio G, et al. Anything but conventional chromatography approaches in bioseparation. Biotechnol J. 2020;15(8):8.

    Article  Google Scholar 

  21. Wang L, Bruce TF, Huang S, Marcus RK. Isolation and quantitation of exosomes isolated from human plasma via hydrophobic interaction chromatography using a polyester, capillary-channeled polymer fiber phase. Anal Chim Acta. 2019;1082:186–93.

    Article  CAS  Google Scholar 

  22. Huang S, Wang L, Bruce TF, Marcus RK. Isolation and quantification of human urinary exosomes by hydrophobic interaction chromatography on a polyester capillary-channeled polymer fiber stationary phase. Anal Bioanal Chem. 2019;411(25):6591–601.

    Article  CAS  Google Scholar 

  23. Huang S, Wang L, Bruce TF, Marcus RK. Evaluation of exosome loading characteristics in their purification via a glycerol-assisted hydrophobic interaction chromatography method on a polyester, capillary-channeled polymer fiber phase. Biotechnol Prog. 2020;36:e2998.

    Article  CAS  Google Scholar 

  24. Jackson KK, Powell RR, Bruce TF, Marcus RK. Solid phase extraction of exosomes from diverse matrices via a polyester capillary-channeled polymer (C-CP) fiber stationary phase in a spin-down tip format. Anal Bioanal Chem. 2020;412:4713–24.

    Article  CAS  Google Scholar 

  25. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73(10):1907–20.

    Article  CAS  Google Scholar 

  26. Johnstone RM. Exosomes biological significance: a concise review. Blood Cells Mol Dis. 2006;36(2):315–21.

    Article  CAS  Google Scholar 

  27. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer. 2014;1846(1):75–87.

    Article  CAS  Google Scholar 

  28. Randunu KM, Dimartino S, Marcus RK. Dynamic evaluation of polypropylene capillary-channeled fibers as a stationary phase in high-performance liquid chromatography. J Sep Sci. 2012;35(23):3270–80.

    Article  CAS  Google Scholar 

  29. Wang Z, Marcus RK. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations. J Chromatogr A. 2014;1351:82–9.

    Article  CAS  Google Scholar 

  30. Randunu KM, Marcus RK. Initial evaluation of protein throughput and yield characteristics on nylon 6 capillary-channeled polymer (C-CP) fiber stationary phases by frontal analysis. Biotechnol Prog. 2013;29(5):1222–9.

    Article  CAS  Google Scholar 

  31. Randunu KM, Marcus RK. Microbore polypropylene capillary channeled polymer (C-CP) fiber columns for rapid reversed-phase HPLC of proteins. Anal Bioanal Chem. 2012;404(3):721–9.

    Article  CAS  Google Scholar 

  32. Wang L, Marcus RK. Evaluation of protein separations based on hydrophobic interaction chromatography using polyethylene terephthalate capillary-channeled polymer (C-CP) fiber phases. J Chromatogr A. 2019;1585:161–71.

    Article  CAS  Google Scholar 

  33. Wang L, Marcus RK. Polypropylene capillary-channeled polymer fiber column as the second dimension in a comprehensive two-dimensional RP X RP analysis of a mixture of intact proteins. Anal Bioanal Chem. 2020;412:2963–79.

    Article  CAS  Google Scholar 

  34. Baca M, De Vos J, Bruylants G, Bartik K, Liu X, Cook K, et al. A comprehensive study to protein retention in hydrophobic interaction chromatography. J Chromatogr B. 2016;1032:182–8.

    Article  CAS  Google Scholar 

  35. Wang F, Liu Y, Ma G, Su Z. Glycerol-assisted hydrophobic interaction chromatography improving refolding of recombinant human granulocyte colony-stimulating factor. Biotechnol Appl Biochem. 2009;159(3):634–41.

    Article  CAS  Google Scholar 

  36. Marshall L, Ghosh MM, Boyce SG, MacNeil S, Freedlander E, Kudesia G. Effect of glycerol on intracellular virus survival: implications for the clinical use of glycerol-preserved cadaver skin. Burns. 1995;21(5):356–61.

    Article  CAS  Google Scholar 

  37. Slepushkin V, Chang N, Cohen R. Large-scale purification of a lentiviral vector by size exclusion chromatography or Mustang Q ion exchange capsule. Bioprocess J. 2003:89–95.

  38. Stanelle RD, Sander LC, Marcus RK. Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography. J Chromatogr A. 2005;1100(1):68–75.

    Article  CAS  Google Scholar 

Download references

Funding

Financial support for the chromatography development efforts from the National Science Foundation, Division of Chemistry, under grant CHE-1608663 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S. Huang developed and performed the chromatographic separations and wrote the manuscript, H. Ding and Y. Wei provided the cell cultures and guidance in performing qPCR analyses, and T. Bruce and R. K. Marcus provided guidance, supervised the project, and reviewed and edited the manuscript.

Corresponding author

Correspondence to R. Kenneth Marcus.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Bruce, T.F., Ding, H. et al. Rapid isolation of lentivirus particles from cell culture media via a hydrophobic interaction chromatography method on a polyester, capillary-channeled polymer fiber stationary phase. Anal Bioanal Chem 413, 2985–2994 (2021). https://doi.org/10.1007/s00216-021-03232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03232-8

Keywords

Navigation