Skip to main content

Advertisement

Log in

Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Broccoli heads and red cabbage of both conventional and ecological origin were purchased from the market at monthly intervals over a 1-year period. After freeze-drying of the samples the glucosinolates were extracted, enzymatically desulphated and analyzed by HPLC-UV. Glucoraphanin, glucobrassicin and neo-glucobrassicin turned out to be the predominant glucosinolates in broccoli. Red cabbage contained similar amounts of glucoraphanin and glucobrassicin but, in addition, appreciable amounts of glucoiberin, progoitrin, sinigrin, gluconapin and glucoerucin, while neo-glucobrassicin occurred at trace levels only. No significance was found comparing the contents of glucoraphanin in the two cultivation groups for either broccoli or red cabbage. Organic broccoli and red cabbage both contained significantly higher amounts of glucobrassicin than their conventionally grown counterparts. Conventional crops of red cabbage yielded significantly higher quantities of gluconapin than ecological crops. Broccoli imported from Spain and Italy during the winter months yielded levels of glucosinolates similar to those of the home-grown products available in summer and autumn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Concentration values are related to dry masses (DW) throughout the text.

References

  1. Verhoeven DTH, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733–748

    CAS  Google Scholar 

  2. Giuvannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2003) A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol Biomarkers Prev 12:1403–1409

    Google Scholar 

  3. Voorips LE, Goldbohm RA, Verhoeven DTH, van Poppel GAFC, Sturmans F, Hermus RJJ, van den Brandt PA (2000) Vegetable and fruit consumption and lung cancer risk in the Netherlands cohort study on diet and cancer. Cancer Causes Control 11:101–115

    Article  Google Scholar 

  4. Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134:1134–1138

    CAS  Google Scholar 

  5. Hara M, Hanaoka T, Kobayashi M, Otani T, Adachi HY, Montani A, Natsukawa S, Shaura K, Koizumi Y, Kasuga Y, Matsuzawa T, Ikekawa T, Sasaki S, Tsugane S (2003) Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan. Nutr Cancer 46:138–147

    Article  Google Scholar 

  6. Michaud DS, Spiegelman D, Clinton SK, Rimm EB, Willet WC, Giovannuci EL (1999) Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J Natl Cancer Inst 91:605–613

    Article  CAS  Google Scholar 

  7. Joshipura KJ, Ascherio A, Manson J, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, Spiegelman D, Willett WC (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282:1233–1239

    Article  CAS  Google Scholar 

  8. Wu L, Ashraf N, Facci M, Wang R, Paterson PG, Ferrie A, Juurlink BH (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci USA 101:7094–7099

    Article  CAS  Google Scholar 

  9. Martínez A, Cambero I, Ikken Y, Marín ML, Haza AI, Morales P (1998) Protective effect of broccoli, onion, carrot, and licorice extracts against cytotoxicity of N-nitrosamines evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. J Agric Food Chem 46:585–589. doi:101021/jf970636i

    Article  Google Scholar 

  10. Brandi G, Schiavano GF, Zaffaroni N, De Marco C, Paiardini M, Cervasi B, Magnani M (2005) Mechanisms of action and antiproliferative properties of Brassica oleracea juice in human breast cancer cell lines. J Nutr 135:1503–1509

    CAS  Google Scholar 

  11. Kassie F, Uhl M, Rabot S, Grasl-Kraupp B, Verjerk R, Kundi M, Chabicovsky M, Schulte-Hermann R, Knasmüller S (2003) Chemoprevention of 2-amino-3-methylimidazo (4, 5-f) quinoline (IQ)-induced colonic and hepatic preneoplastic lesions in the F344 rat by cruciferous vegetables administered simultaneously with the carcinogen. Carcinogenesis 24:255–261. doi:10.1093/carcin/24.2.255

    Article  CAS  Google Scholar 

  12. Bones AM, Rossiter J (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208

    Article  CAS  Google Scholar 

  13. Zhang Y, Talalay P, Cho C-G, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    Article  CAS  Google Scholar 

  14. Barceló S, Mace K, Pfeifer AMA, Chipman JK (1998) Production of DNA strand breaks by N-nitrosodimethylamine and 2-amino-3-methylimidazo[4,5-f] quinoline in THLE cells expressing human CYP isoenzymes and inhibition by sulforaphane. Mutat Res 402:111–120

    Google Scholar 

  15. Brandt K, Molgaard JPM (2001) Organic agriculture: does it enhance or reduce the nutritional value of food plants. J Sci Food Agric 81:924–931. doi:10.1002/jsfa.903

    Article  CAS  Google Scholar 

  16. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  Google Scholar 

  17. Woese K, Lange D, Boess C, Bögl KW (1997) A comparison of organically and conventionally grown foods—results of a review of the relevant literature. J Sci Food Agric 74:281–293

    Article  CAS  Google Scholar 

  18. EC (1990) Oil seeds-determination of glucosinolates, high performance liquid chromatography. Official J Eur Comm L170:28–34

    Google Scholar 

  19. Chiang CK, Pusateri DJ, Leitz REA (1998) Gas chromatography/mass spectrometry method for the determination of sulforaphane and sulforaphane nitrile in broccoli. J Agric Food Chem 46:1018–1021. doi:10.1021/jf970572b

    Article  CAS  Google Scholar 

  20. Matthaeus B, Luftmann H (2000) Glucosinolates in members of the family Brassicaceae: separation and identification by LC/ESI-MS-MS. J Agric Food Chem 48:2234–2239. doi:10.1021/jf991306w

    Article  CAS  Google Scholar 

  21. Artés F, Vallejo F, Martínez JA (2001) Quality of broccoli as influenced by film wrapping during shipment. Eur Food Res Technol 213:480–483. doi:10.1007/s002170100390

    Article  Google Scholar 

  22. Rosa EAS, Rodrigues AS (2001) Total and individual glucosinolate content in 11 broccoli cultivars grown in early and late seasons. Hort Sci 36:56–59

    CAS  Google Scholar 

  23. Hansen M, Moller P, Sorensen H (1995) Glucosinolates in broccoli stored under controlled atmosphere. J Am Soc Hort Sci 120:1069–1074

    CAS  Google Scholar 

  24. Schütze W, Mandel F, Schulz H (1999) Identifizierung von Glucosinolaten in Rettich (Raphanus sativus L) und Kreuzungen aus R. sativus L. × Brassica oleracea L. (Raphanobrassica) mittels LC–MS. Nahrung 43:245–248

    Article  Google Scholar 

  25. Vallejo F, Tomás-Barberán FA, Gonzales Benavente-García A, García-Viguera C (2003) Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J Sci Food Agric 83:307–313. doi:10.1002/jsfa.1320

    Article  CAS  Google Scholar 

  26. Charron CS, Saxton AM, Sams CE (2005) Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J Sci Food Agric 85:671–681. doi:10.1002/jsfa.1880

    Article  CAS  Google Scholar 

  27. Vallejo F, Tomás-Barberán FA, García-Viguera C (2002) Potential bioactive compounds in health promotion from broccoli cultivars grown in Spain. J Sci Food Agric 82:1293–1297. doi:10.1002/jsfa.1183

    Article  CAS  Google Scholar 

  28. Rodrigues AS, Rosa EAS (1999) Effect of post-harvest treatments on the level of glucosinolates in broccoli. J Sci Food Agric 79:1028–1032

    Article  CAS  Google Scholar 

  29. Vallejo F, Tomás-Barberán F, García-Viguera C (2003) Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J Agric Food Chem 51:3029–3034. doi:10.1021/jf021065j

    Article  CAS  Google Scholar 

  30. Rangkadilok N, Tomkins B, Nicolas ME, Premier RR, Bennet RN, Eagling DR, Taylor PWJ (2002) The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). J Agric Food Chem 50:7386–7391. doi:10.1021/jf0203592

    Article  CAS  Google Scholar 

  31. Kushad M, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548. doi:10.1021/jf980985s

    Article  CAS  Google Scholar 

  32. Uhl M, Kassie F, Rabot S, Grasl-Kraupp B, Chakraborty A, Laky B Kundi B, Knasmüller S (2004) Effect of common brassica vegetables (Brussels sprout and red cabbage) on the development of preneoplastic lesions induced by 2-amino-3-methylimidaz [4, 5-f]quinoline(IQ) in liver and colon of Fischer 344 rats. J Chromatography B 802:225–230. doi:10.1016/j.jchromb.2003.11.014

    Article  CAS  Google Scholar 

  33. Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867. doi:10.1021/jf981373a

    Article  CAS  Google Scholar 

  34. Chong C, Berard LC (1983) Changes in glucosinolates during refrigerated storage of cabbage. J Am Soc Hort Sci 108:688–691

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dipl.-Inform. L. Korn who carried out the statistical data analysis, Dipl.-Ing. A. Rathjen for his assistance with graphs and for helpful discussions, and Ms. D. Inkster for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sieghard T. Adam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, M., Adam, S.T. Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming. Eur Food Res Technol 226, 1429–1437 (2008). https://doi.org/10.1007/s00217-007-0674-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0674-0

Keywords

Navigation