Skip to main content
Log in

Identification of buffalo casein-derived bioactive peptides with osteoblast proliferation activity

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Osteoblast cells are the building blocks of bone architecture and most suitable cells for screening osteoanabolic agents. As bone formation begins with osteoblast proliferation, it is the essential stage for screening osteoanbolics. LC–MS/MS analysis of the 11th RP–HPLC fraction of pepsin–trypsin (PT) hydrolysates of buffalo casein showed 15 peptides. Out of these 15 peptides, four peptides of less than 1 kDa were custom-synthesized and evaluated for osteoblast proliferating ability. Proliferation effect of the peptides was studied by formazan crystal formation (MTT method) and relative expression of proliferation marker genes (clay and cdk2). PT hydrolysates and all the four peptides significantly induced osteoblast proliferation indicated by both MTT and relative gene expression studies. This study showed the osteoblast-promoting property of peptides derived from milk proteins, thereby further substantiating the earlier epidemiological data regarding bone health-promoting effect of milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Compston JE (2001) Sex steroids and bone. Physiol Rev 81:419–447

    CAS  Google Scholar 

  2. Liu Y, Ding J, Bush TL, Longenecker JC, Nieto FJ, Golden SH, Szklo M (2001) Relative androgen excess and increased cardiovascular risk after menopause: a hypothesized relation. Am J Epidemiol 154(6):489–494

    Article  CAS  Google Scholar 

  3. Zandi PP, Carlson MC, Plassman BL, Welsh Bohmer KA, Mayer LS, Steffens DC, Breitner JCS (2002) Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache county Study. J Am Med Assoc 288(17):2123–2129

    Article  CAS  Google Scholar 

  4. American cancer society (2006) Ovarian cancer. http://documents.cancer.org/114.00/.pdf. An estrogen receptor? Bone 27:41–46

  5. Genant HK, Copper C, Poor G et al (1999) Interim report and recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporosis Int 10:259–264

    Article  CAS  Google Scholar 

  6. WHO (1994) World Health Organization, Assessment of Fracture Rosk and its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO Study Group. Technical Report Series, No. 843, WHO, Geneva

  7. Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ (1982) Changes in bone mineral density of the proximal femur and spine with aging. Difference between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 70(4):716–723

    Article  CAS  Google Scholar 

  8. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136

    Article  CAS  Google Scholar 

  9. Barrett EJ, Barret P (2005) The parathyroid glands and vitamin D. In: Boron W, Boulpaep EL (eds) Medical physiology. Elsevier Saunders, Philadelphia, p 1086

    Google Scholar 

  10. Lee ZH, Kim HH (2003) Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem Biophys Res Commun 305:211–214

    Article  CAS  Google Scholar 

  11. Eismann JA (2004) Osteoporosis risk high in India. Frontline 21(1):3–16

    Google Scholar 

  12. Murphy S, Khaw KT, May H, Composton JE (1994) Milk consumption and bone mineral density in middle aged and elderly women. Br Med J 308:939–941

    Article  CAS  Google Scholar 

  13. Kalkwarf HJ, Khoury JC, Lanphear BP (2003) Milk intake during childhood and adolescence, adult bond density and osteoporotic fractures in US women. Am J Clin Nutr 77:257–265

    CAS  Google Scholar 

  14. Chee WSS, Suriah AR, Chan SP, Zaitun Y, Chan YM (2003) The effect of milk supplementation on bone mineral density in postmenopausal Chinese women in Malaysia. Osteoporos Int 14:828–834

    Article  CAS  Google Scholar 

  15. Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EY, Crncevic-Orlic Z, Li B, Goel P (2004) Nutrition influences skeletal development from Childhood to adulthood: a study of hip, spine and forearm in adolescent females. J Nutr 134:701S–705S

    Google Scholar 

  16. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality—review. Int Dairy J 16:945–960

    Article  CAS  Google Scholar 

  17. Haque E, Chand R, Kapila S (2009) Biofunctional properties of bioactive peptides of milk origin. Food Rev Int 25(1):28–43

    Article  CAS  Google Scholar 

  18. Mao X, Cheng X, Wang X, Wu S (2011) Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem 126:484–490

    Article  CAS  Google Scholar 

  19. Narva M, Rissanen J, Halleen J, Vapaatalo H, Vaananen K, Korpela R (2007) Effects of bioactive peptide, Valyl-Prolyl-Proline (VPP), and Lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. J Nutr Metab Dis Dietet 51(1):65–74

    CAS  Google Scholar 

  20. Behera P, Kumar R, Sandeep IVR, Kapila R, Dang AK, Kapila S (2013) Casein hydrolysates enhance osteoblast proliferation and differentiation in mouse bone marrow culture. Food Biosci 2:24–30

    Article  CAS  Google Scholar 

  21. Davies DT, Law AJR (1977) An improved method for the quantitative fractionation of casein mixture using ion-exchange chromatography. J Dairy Res 44:213–221

    Article  CAS  Google Scholar 

  22. Abubakar A, Saito T, Kitazawa H, Kawai T, Itoh T (1998) Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinse K digestion. J Dairy Sci 81:3131–3138

    Article  CAS  Google Scholar 

  23. Lu Z, Karne S, Kolodecik T, Gorelick FS (2002) Alcohols enhance caerulein-induced zymogen activation in pancreatic acinar cells. Am J Physiol Gasterointestinal Liver Physiol 282:G501–G507

    Article  CAS  Google Scholar 

  24. Hernandez-Ledesma Recio I, Ramos M, Amigo L (2002) Preparation of ovine and caprine β-lactoglobulin hydrolysates with ACE inhibitory activity: influence of the inhibition type. J Agric Food Chem 51:4175–4179

    Article  Google Scholar 

  25. Shanmugam VP, Kapila S, Kemgang Sonfack T, Kapila R (2014) Antioxidative peptide derived from enzymatic digestion of buffalo casein. Int Dairy J 42(2015):1–5

    Google Scholar 

  26. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  Google Scholar 

  27. Zhi-xin C, Min C, Ya-li P, Li Z, Yu-rui Z, Li-jing W, Rui W (2007) Osteogenic growth peptide C-terminal pentapeptide [OGP(10–14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Reg Pept 142:16–23

    Article  Google Scholar 

  28. Hyung KK, Ji HK, Dae SP, Kyung SP, Seong SK, Jun SL, Myung HJ, Taek RY (2012) Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials 33:7057–7063

    Article  Google Scholar 

  29. Monnipha S, Ahnond B, Sakan M, Hiromichi K, Narong B (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53(1):25–35

    Google Scholar 

  30. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  31. Choi YJ, Lee JY, Chung CP, Park YJ (2013) Enhanced osteogenesis by collagen-binding peptide from bone sialoprotein in vitro and in vivo. J Biomed Mater Res Part A 101:547–554

    Article  Google Scholar 

  32. Xu R (2009) Effect of whey protein on the proliferation and differentiation of osteoblasts. J Dairy Sci 92:3012–3018

    Article  Google Scholar 

  33. Qinming F, Changjun G, Xiaoya X, Jianjun G, Jian Z, Tongyi C, Dafu C (2010) Osteogenic growth peptide enhances the proliferation of bone marrow mesenchymal stem cells from osteoprotegerin-deficient mice by CDK2/cyclin A. Acta Biochim Biophys Sin 42:801–806

    Article  Google Scholar 

  34. Huttunen MM, Pekkinen M, Ahlstrom MEB, Lamberg-Allarddt CJE (2007) Effects of bioactive peptides isoleucine–proline–proline (IPP), valine–proline–proline (VPP) and leucine–lysine–proline (LKP) on gene expression of osteoblasts differentiated from human mesenchymal stem cell. Br J Nutr 98:780–788

    Article  CAS  Google Scholar 

  35. Wei Z, Xing S, Chao W, Qiang Z, Lianfang Z, Qi Z, Lianfu D (2012) Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ER. Cell Biochem Funct 30:297–302

    Article  Google Scholar 

  36. Vidal A, Koff A (2000) Cell-cycle inhibitors: three families united by a common cause. Gene 247:1–15

    Article  CAS  Google Scholar 

  37. Heichman KA, Roberts JM (1994) Rules to replicate by. Cell 79:557–562

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, ICAR-National Dairy Research Institute, Karnal, for providing funding and laboratory facilities to carry out this piece of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kapila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddi, S., Shanmugam, V.P., Kapila, S. et al. Identification of buffalo casein-derived bioactive peptides with osteoblast proliferation activity. Eur Food Res Technol 242, 2139–2146 (2016). https://doi.org/10.1007/s00217-016-2710-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2710-4

Keywords

Navigation