Skip to main content
Log in

Asymptotic Expansion of β Matrix Models in the One-cut Regime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of a 1/N expansion to all orders in β matrix models with a confining, offcritical potential corresponding to an equilibrium measure with a connected support. Thus, the coefficients of the expansion can be obtained recursively by the “topological recursion” derived in Chekhov and Eynard (JHEP 0612:026, 2006). Our method relies on the combination of a priori bounds on the correlators and the study of Schwinger-Dyson equations, thanks to the uses of classical complex analysis techniques. These a priori bounds can be derived following (Boutet de Monvel et al. in J Stat Phys 79(3–4):585–611, 1995; Johansson in Duke Math J 91(1):151–204, 1998; Kriecherbauer and Shcherbina in Fluctuations of eigenvalues of matrix models and their applications, 2010) or for strictly convex potentials by using concentration of measure (Anderson et al. in An introduction to random matrices, Sect. 2.3, Cambridge University Press, Cambridge, 2010). Doing so, we extend the strategy of Guionnet and Maurel-Segala (Ann Probab 35:2160–2212, 2007), from the hermitian models (β = 2) and perturbative potentials, to general β models. The existence of the first correction in 1/N was considered in Johansson (1998) and more recently in Kriecherbauer and Shcherbina (2010). Here, by taking similar hypotheses, we extend the result to all orders in 1/N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambjørn J., Chekhov L.O., Kristjansen C., Makeenko Yu.: Matrix model calculations beyond the spherical limit. Nucl. Phys. B 404, 127–172 (1993)

    Article  ADS  Google Scholar 

  2. Ambjørn J., Chekhov L.O., Kristjansen C., Makeenko Yu.: Erratum to Matrix model calculations beyond the spherical limit. Nucl. Phys. B 449, 681 (1995)

    Article  ADS  Google Scholar 

  3. Ambjørn J., Chekhov L.O., Makeenko Yu.: Higher genus correlators from the hermitian 1-matrix model. Phys. Lett. B 282, 341–348 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ben Arous G., Guionnet A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Prob. Th. Rel. Fields 108(4), 517–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, G., Guionnet, A., Zeitouni, O.: An introduction to random matrices. Cambridge: Cambridge University Press, 2010, available at http://www.wisdom.weizmann.ac.il/~zeitouni/

  6. Ambjørn J., Makeenko Yu.: Properties of loop equations for the hermitian matrix model and for two-dimensional gravity. Mod. Phys. Lett. A 5, 1753–1763 (1990)

    Article  ADS  Google Scholar 

  7. Albeverio S., Pastur L., Shcherbina M.: On the 1/N expansion for some unitary invariant ensembles of random matrices. Commun. Math. Phys. 224, 271–305 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Borot G., Eynard B.: Enumeration of maps with self avoiding loops and the \({\mathcal{O}(\mathfrak{n})}\) model on random lattices of all topologies. J. Stat. Mech. 2011(1), P01010 (2011)

    Article  MathSciNet  Google Scholar 

  9. Beenakker C.W.J.: Universality of Brézin and Zee’s spectral correlator. Nucl. Phys. B 422, 515–520 (1994)

    Article  ADS  Google Scholar 

  10. Bleher P., Its A.: Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. Math. 150, 185–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brézin É., Itzykson C., Parisi G., Zuber J.-B.: Planar diagrams. Commun. Math. Phys. 59, 35–51 (1978)

    Article  ADS  MATH  Google Scholar 

  12. Chekhov L.O., Eynard B.: Matrix eigenvalue model: Feynman graph technique for all genera. JHEP 0612, 026 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  13. Dumitriu I., Edelman A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Deift, P.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics, Vol. 3, New York: New York University Courant Institute of Mathematical Sciences, 1999

  15. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Asymptotics for polynomials orthogonal with respect to varying exponential weights. Int. Math. Res. Notices 16, 759–782 (1997)

    Article  MathSciNet  Google Scholar 

  16. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights via Riemann-Hilbert techniques. Comm. Pure Appl. Math. 52(12), 1491–1552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boutet de Monvel A., Pastur L., Shcherbina M.: On the statistical mechanics approach in the random matrix theory. Integrated density of states. J. Stat. Phys. 79(3-4), 585–611 (1995)

    MathSciNet  ADS  MATH  Google Scholar 

  19. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the mKdV equation. Ann. Math. 137, 295–368 (1995)

    MathSciNet  Google Scholar 

  20. Ercolani N.M., McLaughlin K.T.-R.: Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques, and applications to graphical enumeration. Int. Math. Res. Not. 14, 755–820 (2003)

    Article  MathSciNet  Google Scholar 

  21. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347–452 (2007)

  22. Eynard B.: All genus correlation functions for the hermitian 1-matrix model. JHEP 0411, 031 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  23. Eynard B.: Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence. JHEP 0903, 003 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Fokas A.S., Its A.R., Kitaev A.V.: The isomonodromy approach to matrix models in 2d quantum gravity. Commun. Math. Phys. 147, 395–430 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Guionnet A., Maurel-Segala E.: Second order asymptotics for matrix models. Ann. Probab. 35, 2160–2212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guionnet A., Zeitouni O.: Concentration of the spectral measure for large matrices. Electron. Comm. Probab. 5, 119–136 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Johansson K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kriecherbauer, T., Shcherbina, M.: Fluctuations of eigenvalues of matrix models and their applications. http://arxiv.org/abs/1003.6121v1 [math-ph]

  29. Mehta, M.L.: Random matrices. Third ed. Pure and Applied Mathematics, Vol. 142, Amsterdam: Elsevier/Academic, 2004

  30. Maurel-Segala, E.: Private communication

  31. Pastur L.: On the spectrum of random matrices. Teor. Mat. Fiz. 10(1), 102–112 (1972)

    Article  MathSciNet  Google Scholar 

  32. Pastur, L., Shcherbina, M.: Eigenvalue distribution of large random matrices. Mathematical Surveys and Monographs, Vol. 171, Providence, RI: Amer. Math. Soc., 2011

  33. Rider, B.: Talk at MSRI. Semester on Random Matrix Theory, September 2010.

  34. Ramìrez J.A., Rider B., Virág B.: Beta ensembles, stochastic Airy process, and a diffusion. J. Amer. Math. Soc. 24(4), 919–944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Selberg A.: Remarks on a multiple integral. Norsk. Mat. Tiddskr. 26, 71–88 (1944)

    MathSciNet  MATH  Google Scholar 

  36. Tricomi, F.G.: Integral equations. Pure Appl. Math., Vol. V, London: Interscience, 1957

  37. Wigner E.P.: On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67, 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guionnet.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borot, G., Guionnet, A. Asymptotic Expansion of β Matrix Models in the One-cut Regime. Commun. Math. Phys. 317, 447–483 (2013). https://doi.org/10.1007/s00220-012-1619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1619-4

Keywords

Navigation