Skip to main content
Log in

Differential Topology of Semimetals

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The subtle interplay between local and global charges for topological semimetals exactly parallels that for singular vector fields. Part of this story is the relationship between cohomological semimetal invariants, Euler structures, and ambiguities in the connections between Weyl points. Dually, a topological semimetal can be represented by Euler chains from which its surface Fermi arc connectivity can be deduced. These dual pictures, and the link to topological invariants of insulators, are organised using geometric exact sequences. We go beyond Dirac-type Hamiltonians and introduce new classes of semimetals whose local charges are subtle Atiyah–Dupont–Thomas invariants globally constrained by the Kervaire semicharacteristic, leading to the prediction of torsion Fermi arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F.: Vector fields on manifolds. Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen, vol. 200, pp. 7–26. VS, Cologne (1970)

  2. Atiyah M.F., Dupont J.L.: Vector fields with finite singularities. Acta Math. 128(1), 1–40 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah M.F., Rees E.: Vector bundles on projective 3-space. Invent. Math. 35, 131–153 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Avila J.C., Schulz-Baldes H., Villegas-Blas C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16(2), 137–170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avron J.E., Sadun L., Segert J., Simon B.: Topological invariants in Fermi systems with time-reversal invariance. Phys. Rev. Lett. 61, 1329 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. Avron J.E., Sadun L., Segert J., Simon B.: Chern numbers, quaternions, and Berry’s phases in Fermi systems. Commun. Math. Phys. 124(4), 595–627 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Borel A., Hirzebruch F.: Characteristic classes and homogeneous spaces, I. Am. J. Math. 80(2), 458–538 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borel A., Moore J.C.: Homology theory for locally compact spaces. Mich. Math. J. 7(2), 137–159 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bott R., Tu L.W.: Differential Forms in Algebraic Topology. Grad. Texts in Math. 82. Springer, New York (1982)

    Book  Google Scholar 

  10. Bradlyn, B., Cano, J., Wang, Z., Vergniory, M.G., Felser, C., Cava, R.J., Bernevig, B.A.: Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353(6299) (2016)

  11. Brylinski J-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Progress in Mathematics, 107. Birkhauser Boston, Inc., Boston (1993)

    Book  Google Scholar 

  12. Burghelea D., Haller S.: Euler structures, the variety of representations and the Milnor–Turaev torsion. Geom. Topol. 10, 1185–1238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chriss N., Ginzburg V.: Representation Theory and Complex Geometry. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  14. Carpentier D., Delplace P., Fruchart M., Gawędzki K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114(10), 106806 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. De Nittis G., Gomi K.: Classification of “Quaternionic” Bloch-bundles topological quantum Systems of type AII. Commun. Math. Phys. 339, 1–55 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dupont J.L.: Symplectic bundles and KR-theory. Math. Scand. 24(1), 27–30 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dwivedi V., Chua V.: Of bulk and boundaries: generalized transfer matrices for tight-binding models. Phys. Rev. B 93, 134304 (2016)

    Article  ADS  Google Scholar 

  18. Dwivedi V., Ramamurthy S.T.: Connecting the dots: time-reversal symmetric Weyl semimetals with tunable Fermi arcs. Phys. Rev. B 94, 245143 (2016)

    Article  ADS  Google Scholar 

  19. Freed D.S., Moore G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98(10), 106803 (2007)

    Article  ADS  Google Scholar 

  21. Gawędzki K.: 2d Fu–Kane–Mele invariant as Wess–Zumino action of the sewing matrix. Lett. Math. Phys. 107(4), 733–755 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hatsugai Y.: Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function. Phys. Rev. B 48(16), 11851–11862 (1993)

    Article  ADS  Google Scholar 

  23. Hatsugai Y.: Symmetry-protected \({{\mathbb{Z}}_2}\) -quantization and quaternionic Berry connection with Kramers degeneracy. New J. Phys. 12, 065004 (2010)

    Article  ADS  Google Scholar 

  24. Herring C.: Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52, 365–373 (1937)

    Article  ADS  Google Scholar 

  25. Huang S.-M. et al.: New type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl. Acad. Sci. USA 113(5), 1180–1185 (2016)

    Article  ADS  Google Scholar 

  26. Hutchings M.: Reidemeister torsion in generalized Morse theory. Forum Math. 14, 209–244 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iversen B.: Cohomology of Sheaves. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  28. Kato T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995)

    Book  Google Scholar 

  29. Kaufmann R.M., Li D., Wehefritz-Kaufmann B.: Notes on topological insulators. Rev. Math. Phys. 28(10), 1630003 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Korbaš J.: Distributions, vector distributions, and immersions of manifolds in Euclidean spaces. In: Krupka, D., Saunders, D. (eds) Handbook of Global Analysis, pp. 665–724. Elsevier Science, Amsterdam (2008)

    Chapter  Google Scholar 

  31. Kraus Y.E., Lahini Y., Ringel Z., Verbin M., Zilberberg O.: Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012)

    Article  ADS  Google Scholar 

  32. Kuchment P.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53, 343–414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lawson H.B., Michelsohn M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  34. Lin H., Yau S.-T.: On exotic sphere fibrations, topological phases, and edge states in physical systems. Int. J. Modern Phys. B 27(19), 1350107 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lindner N.H., Refael G., Galitski V.: Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011)

    Article  Google Scholar 

  36. Liu, J., Fang, C., Fu, L.: Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators. arXiv:1604.03947

  37. Lv B.Q. et al.: Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  38. Mathai V., Thiang G.C.: T-duality of topological insulators. J. Phys. A: Math. Theor. 48(42), 42FT02. (2015) arXiv:1503.01206

    Article  MathSciNet  MATH  Google Scholar 

  39. Mathai V., Thiang G.C.: T-duality simplifies bulk-boundary correspondence. Commun. Math. Phys. 345(2), 675–701. (2016) arXiv:1505.05250

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Mathai V., Thiang G.C.: T-duality simplifies bulk-boundary correspondence: some higher dimensional cases. Ann. Henri Poincaré 17(12), 3399–3424. (2016) arXiv:1506.04492

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Mathai V., Thiang G.C.: Global topology of Weyl semimetals and Fermi arcs. J. Phys. A: Math. Theor. (Letter) 50(11), 11LT01 (2017) arXiv:1607.02242

    Article  MathSciNet  MATH  Google Scholar 

  42. Milnor J.: On manifolds homeomorphic to the 7-sphere. Ann. Math. (2) 64(2), 399–405 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  43. Milnor J.: Topology from the Differentiable Viewpoint. Based on Notes by David W. Weaver. The University Press of Virginia, Charlottesville (1965)

    MATH  Google Scholar 

  44. Molina O.M.: Co-Euler structures on bordisms. Topol. Appl. 193, 51–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Murray M., Stevenson D.: The basic bundle gerbe on unitary groups. J. Geom. Phys. 58(11), 1571–1590 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Murray M., Stevenson D.: Bundle gerbes: stable isomorphism and local theory. J. Lond. Math. Soc. (2) 62(3), 925–937 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nielsen H.B., Ninomiya M.: Absence of neutrinos on a lattice: (II). Intuitive topological proof. Nucl. Phys. B 193, 173–194 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. Paechter G.F.: The groups π r (V n,m ). Q. J. Math. 7(1), 249–268 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  49. Polyakov A.M.: Particle spectrum in quantum field theory. Pisma. Zh. Eksp. Theor. Fiz. 20, 430 (1974) [JETP Lett. 20 194 (1974)]

    Google Scholar 

  50. Prodan E.: Virtual topological insulators with real quantized physics. Phys. Rev. B 91, 245104 (2015)

    Article  ADS  Google Scholar 

  51. Read N.: Compactly-supported Wannier functions and algebraic K-theory. Phys. Rev. B 95, 115309 (2017)

    Article  ADS  Google Scholar 

  52. Rechtsman M.C.: Photonic Floquet topological insulators. Nature 496, 196–200 (2013)

    Article  ADS  Google Scholar 

  53. Reed M., Simon B.: Methods of Modern Mathematica Physics. Vol. IV: Analysis of Operators. Elsevier, Amsterdam (1978)

    MATH  Google Scholar 

  54. Simon B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51(24), 2167 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  55. Simons, J., Sullivan, D.: The Mayer–Vietoris property in differential cohomology. arXiv:1010.5269

  56. Soluyanov A.A., Gresch D., Wang Z., Wu Q., Troyer M., Dai X., Bernevig B.A.: Type-II Weyl semimetals. Nature 527, 495–498 (2015)

    Article  ADS  Google Scholar 

  57. Shaw R., Lever J.: Irreducible multiplier corepresentations of the extended Poincaré group. Commun. Math. Phys. 38(4), 279–297 (1974)

    Article  ADS  MATH  Google Scholar 

  58. t’ Hooft G.: Magnetic monopoles in unified gauge theories. Nucl Phys. B 79(2), 276–284 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  59. Tang Z., Zhang W.: A generalization of the Atiyah–Dupont vector fields theory. Commun. Contemp. Math. 4(4), 777–796 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  60. Thiang G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré. 17(4), 757–794 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Thomas E.: The index of a tangent 2-field. Comment. Math. Helv. 42(1), 86–110 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  62. Thomas E.: Vector fields on manifolds. Bull. Am. Math. Soc. 75(4), 643–683 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  63. Turaev V.: Euler structures, nonsingular vector fields, and torsions of Reidemeister type. Izv. Math. 34(3), 627–662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  64. Turaev V.: Torsion invariants of Spin c-structures on 3-manifolds. Math. Res. Lett. 4, 679–695 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  65. Turner A.M., Vishwanath A.: Beyond band insulators: topology of semimetals and interacting phases. In: Franz, M., Molenkamp, L. (eds) Contemp. Concepts Cond. Mat. Sci. 6, Topological Insulators, pp. 293–324. Elsevier, Amsterdam (2013)

    Google Scholar 

  66. Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction, vol. 11. Courant Institute of Mathematical Sciences at New York University, New York (2004)

  67. von Neumann J., Wigner E.P.: Über merkwürdige diskrete Eigenwerte. Physik. Zeits. 30, 467–470 (1929)

    MATH  Google Scholar 

  68. Wan X., Turner A.M., Vishwanath A., Savrasov S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  69. Wigner E.P.: Unitary representations of the inhomogeneous Lorentz group including reflections. In: Gürsey, F. (eds) Group Theoretical Concepts in Elementary Particle Physics, vol. 1., pp. 37–80. Gordon and Breach, New York (1964)

    Google Scholar 

  70. Witten E.: Three lectures on topological phases of matter. La Rivista del Nuovo Cimento 39(7), 313–370 (2016)

    ADS  Google Scholar 

  71. Xu S.-Y. et al.: Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015)

    Article  ADS  Google Scholar 

  72. Xu S.-Y. et al.: Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015)

    Article  Google Scholar 

  73. Xu Y., Zhang F., Zhang C.: Structured Weyl points in Spin-orbit coupled fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015)

    Article  ADS  Google Scholar 

  74. Zhang C. et al.: Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016)

    Article  ADS  Google Scholar 

  75. Zhang S.-C., Lian B.: Five-dimensional generalization of the topological Weyl semimetal. Phys. Rev. B 94, 041105(R) (2016)

    Article  ADS  Google Scholar 

  76. Zhao Y.X., Wang Z.D.: Topological classification and stability of Fermi surfaces. Phys. Rev. Lett 110, 240404 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varghese Mathai.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathai, V., Thiang, G.C. Differential Topology of Semimetals. Commun. Math. Phys. 355, 561–602 (2017). https://doi.org/10.1007/s00220-017-2965-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2965-z

Navigation