Skip to main content
Log in

On-line corrections for visuomotor errors

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study was designed to determine how visual feedback mediates error corrections during reaching. We used visuomotor rotations to dissociate a cursor, representing finger position, from the actual finger location. We then extinguished cursor feedback at different distances from the start location to determine whether corrections were based on error extrapolation from prior cursor information. Results indicated that correction amplitude varied with the extent of cursor feedback. A second experiment tested specific aspects of error information that might mediate corrections to visuomotor rotations: rotation angle, distance between the finger and cursor positions and the duration of cursor exposure. Results showed that corrections did not depend on the amplitude of the rotation angle or the amount of time the cursor was shown. Instead, participants corrected for the cursor–finger distance, at the point where cursor feedback was last-seen. These findings suggest that within-trial corrections and inter-trial adaptation might employ different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agostino R, Sanes JN, Hallett M (1996) Motor skill learning in Parkinson’s disease. J Neurol Sci 139:218–226

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  • Bagesteiro LB, Sarlegna FR, Sainburg RL (2006) Differential influence of vision and proprioception on control of movement distance. Exp Brain Res 171:358–370

    Article  PubMed  Google Scholar 

  • Bedard P, Proteau L (2004) On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements. Exp Brain Res 158:75–85

    Article  PubMed  Google Scholar 

  • Blouin J, Bard C, Teasdale N, Fleury M (1993a) On-line versus off-line control of rapid aiming movements. J Mot Behav 25:275–279

    PubMed  CAS  Google Scholar 

  • Blouin J, Teasdale N, Bard C, Fleury M (1993b) Directional control of rapid arm movements: the role of the kinetic visual feedback system. Can J Exp Psychol 47:678–696

    Article  PubMed  CAS  Google Scholar 

  • Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636

    Article  PubMed  CAS  Google Scholar 

  • Carlton LG (1981) Processing visual feedback information for movement control. J Exp Psychol Hum Percept Perform 7:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Chua R, Elliott D, Goodman D (1990) The contribution of vision to asymmetries in manual aiming. Neuropsychologia 28:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Goodman D, Elliott D (1992) Asymmetries in the discrete and pseudocontinuous regulation of visually guided reaching. Brain Cogn 18:169–191

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Goodman D, Chua R, Elliott D (1993) Asymmetries in the regulation of visually guided aiming. J Mot Behav 25:21–32

    PubMed  CAS  Google Scholar 

  • Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R (2006) Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cereb Cortex 16:1462–1473

    Article  PubMed  Google Scholar 

  • Clower DM, Dum RP, Strick PL (2005) Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex 15:913–920

    Article  PubMed  Google Scholar 

  • Day BL, Thompson PD, Harding AE, Marsden CD (1998) Influence of vision on upper limb reaching movements in patients with cerebellar ataxia. Brain 121(Pt 2):357–372

    Article  PubMed  Google Scholar 

  • Desmurget M, Rossetti Y, Prablanc C, Stelmach GE, Jeannerod M (1995) Representation of hand position prior to movement and motor variability. Can J Physiol Pharmacol 73:262–272

    PubMed  CAS  Google Scholar 

  • Desmurget M, Gaveau V, Vindras P, Turner RS, Broussolle E, Thobois S (2004) On-line motor control in patients with Parkinson’s disease. Brain 127:1755–1773

    Article  PubMed  CAS  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25:9919–9931

    Article  PubMed  CAS  Google Scholar 

  • Elliott D, Allard F (1985) The utilization of visual feedback information during rapid pointing movements. Q J Exp Psychol A 37:407–425

    PubMed  CAS  Google Scholar 

  • Fernandez-Ruiz J, Diaz R, Hall-Haro C, Vergara P, Mischner J, Nunez L, Drucker-Colin R, Ochoa A, Alonso ME (2003) Normal prism adaptation but reduced after-effect in basal ganglia disorders using a throwing task. Eur J Neurosci 18:689–694

    Article  PubMed  CAS  Google Scholar 

  • Ghilardi MF, Gordon J, Ghez C (1995) Learning a visuomotor transformation in a local area of work space produces directional biases in other areas. J Neurophysiol 73:2535–2539

    PubMed  CAS  Google Scholar 

  • Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelberg D (2000) Patterns of regional brain activation associated with different forms of motor learning. Brain Res 871:127–145

    Article  PubMed  CAS  Google Scholar 

  • Gilbert PF, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res 128:309–328

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1995) Impairments of reaching movements in patients without proprioception. I. Spatial errors. J Neurophysiol 73:347–360

    PubMed  CAS  Google Scholar 

  • Heath M, Hodges NJ, Chua R, Elliott D (1998) On-line control of rapid aiming movements: unexpected target perturbations and movement kinematics. Can J Exp Psychol 52:163–173

    Google Scholar 

  • Hinder MR, Tresilian JR, Riek S, Carson RG (2008) The contribution of visual feedback to visuomotor adaptation: how much and when? Brain Res 1197:123–134

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Sugiura M, Ito M, Fukuda H (1997) Activity in the parietal area during visuomotor learning with optical rotation. Neuroreport 8:3979–3983

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Koyama M, Sugiura M, Ito M, Fukuda H (1998) PET study of pointing with visual feedback of moving hands. J Neurophysiol 79:117–125

    PubMed  CAS  Google Scholar 

  • Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, Ito M, Fukuda H (2000) A PET study of visuomotor learning under optical rotation. Neuroimage 11:505–516

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa S, Kimura T, Yin PB (1998) Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 392:494–497

    Article  PubMed  CAS  Google Scholar 

  • Klassen J, Tong C, Flanagan JR (2005) Learning and recall of incremental kinematic and dynamic sensorimotor transformations. Exp Brain Res 164:250–259

    Article  PubMed  Google Scholar 

  • Komilis E, Pelisson D, Prablanc C (1993) Error processing in pointing at randomly feedback-induced double-step stimuli. J Mot Behav 25:299–308

    PubMed  CAS  Google Scholar 

  • Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244–247

    Article  PubMed  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91:924–933

    Article  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119(Pt 4):1183–1198

    Article  PubMed  Google Scholar 

  • Ma-Wyatt A, McKee SP (2007) Visual information throughout a reach determines endpoint precision. Exp Brain Res 179:55–64

    Article  PubMed  Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645

    Article  PubMed  CAS  Google Scholar 

  • Mutha PK, Boulinguez P, Sainburg RL (2008) Visual modulation of proprioceptive reflexes during movement. Brain Res 1246:54–69

    Article  PubMed  CAS  Google Scholar 

  • Nijhof EJ (2003) On-line trajectory modifications of planar, goal-directed arm movements. Hum Mov Sci 22:13–36

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Prablanc C, Echallier JE, Jeannerod M, Komilis E (1979) Optimal response of eye and hand motor systems in pointing at a visual target. II. Static and dynamic visual cues in the control of hand movement. Biol Cybern 35:183–187

    Article  PubMed  CAS  Google Scholar 

  • Rossetti Y, Stelmach G, Desmurget M, Prablanc C, Jeannerod M (1994) The effect of viewing the static hand prior to movement onset on pointing kinematics and variability. Exp Brain Res 101:323–330

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Sainburg RL, Poizner H, Ghez C (1993) Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol 70:2136–2147

    PubMed  CAS  Google Scholar 

  • Sanes JN, Dimitrov B, Hallett M (1990) Motor learning in patients with cerebellar dysfunction. Brain 113(Pt 1):103–120

    Article  PubMed  Google Scholar 

  • Sarlegna FR, Sainburg RL (2007) The effect of target modality on visual and proprioceptive contributions to the control of movement distance. Exp Brain Res 176:267–280

    Article  PubMed  Google Scholar 

  • Saunders JA, Knill DC (2003) Humans use continuous visual feedback from the hand to control fast reaching movements. Exp Brain Res 152:341–352

    Article  PubMed  Google Scholar 

  • Saunders JA, Knill DC (2004) Visual feedback control of hand movements. J Neurosci 24:3223–3234

    Article  PubMed  CAS  Google Scholar 

  • Saunders JA, Knill DC (2005) Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements. Exp Brain Res 162:458–473

    Article  PubMed  Google Scholar 

  • Shabbott BA, Sainburg RL (2008) Differentiating between two models of motor lateralization. J Neurophysiol 100:565–575

    Article  PubMed  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    Article  PubMed  Google Scholar 

  • Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403:544–549

    Article  PubMed  CAS  Google Scholar 

  • Sober SJ, Sabes PN (2003) Multisensory integration during motor planning. J Neurosci 23:6982–6992

    PubMed  CAS  Google Scholar 

  • Sober SJ, Sabes PN (2005) Flexible strategies for sensory integration during motor planning. Nat Neurosci 8:490–497

    PubMed  CAS  Google Scholar 

  • Temprado JJ, Vieilledent S, Proteau L (1996) Afferent information for motor control: the role of visual information in different portions of the movement. J Mot Behav 28:280–287

    PubMed  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • Tunik E, Poizner H, Adamovich SV, Levin MF, Feldman AG (2004) Deficits in adaptive upper limb control in response to trunk perturbations in Parkinson’s disease. Exp Brain Res 159:23–32

    PubMed  CAS  Google Scholar 

  • van Beers RJ, Wolpert DM, Haggard P (2002) When feeling is more important than seeing in sensorimotor adaptation. Curr Biol 12:834–837

    Article  PubMed  Google Scholar 

  • van der Meulen JH, Gooskens RH, Denier van der Gon JJ, Gielen CC, Wilhelm K (1990) Mechanisms underlying accuracy in fast goal-directed arm movements in man. J Mot Behav 22:67–84

    PubMed  Google Scholar 

  • Vingerhoets RA, Medendorp WP, Van Gisbergen JA (2006) Time course and magnitude of illusory translation perception during off-vertical axis rotation. J Neurophysiol 95:1571–1587

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2005) Adaptation to visuomotor rotations remaps movement vectors, not final positions. J Neurosci 25:4024–4030

    Article  PubMed  CAS  Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev 3(monograph Supplement):1–119

    Google Scholar 

  • Zarahn E, Weston GD, Liang J, Mazzoni P, Krakauer JW (2008) Explaining savings for visuomotor adaptation: linear time-invariant state-space models are not sufficient. J Neurophysiol 100:2537–2548

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ewelina Styczynska for participant recruitment and scholarly discussions regarding this manuscript. This research was supported by the National Institutes of Health, National Institute of Child Health and Human Development Grant #R01HD39311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Sainburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabbott, B.A., Sainburg, R.L. On-line corrections for visuomotor errors. Exp Brain Res 195, 59–72 (2009). https://doi.org/10.1007/s00221-009-1749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1749-x

Keywords

Navigation