Skip to main content

Advertisement

Log in

Electrical stimulation of the motor cortex enhances progenitor cell migration in the adult rat brain

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Clinical and preclinical investigations suggest that epidural stimulation of the motor cortex (MC) can improve stroke-induced neurological deficits. The mechanisms involved in stimulation-induced recovery are not well understood and might involve neurogenesis-related processes. Here, we addressed the question whether MC stimulation influences processes of migration and differentiation of neuronal progenitor cells in vivo. Epidural stimulation electrodes were implanted at the level of the MC in rats, and electrical current was applied for a period of 1 month. Increased cell proliferation was observed in the subventricular zone (SVZ). We also found evidences for enhanced cell migration toward the source of current, a process known as electrotaxis. Some of these cells expressed the neuronal marker, NeuN. In addition, our results indicate that MC stimulation enhances neuronal activity of the dorsal raphe nucleus, leading to an increase in the expression of 5-hydroxytryptamine in the SVZ. It is known that such an increase can promote formation of new cells in the SVZ. Our findings suggest that epidural MC stimulation influences neurogenesis-related processes in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12:4381–4390

    PubMed  CAS  Google Scholar 

  • Arocena M, Zhao M, Collinson JM, Song B (2010) A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res 88:3267–3274

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Kameda M, Yasuhara T, Morimoto T, Kondo A, Shingo T, Tajiri N, Wang F, Miyoshi Y, Borlongan CV, Matsumae M, Date I (2009) Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke 40:e598–e605

    Article  PubMed  Google Scholar 

  • Banasr M, Duman RS (2007) Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets 6:311–320

    Article  PubMed  CAS  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    Article  PubMed  CAS  Google Scholar 

  • Borgens RB, Shi R (1995) Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential. Dev Dyn 203:456–467

    Article  PubMed  CAS  Google Scholar 

  • Borgens RB, Jaffe LF, Cohen MJ (1980) Large and persistent electrical currents enter the transected lamprey spinal cord. Proc Natl Acad Sci USA 77:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Brown JA (2003) Editorial. Neurol Res 25:115–117

    Article  Google Scholar 

  • Brown MJ, Loew LM (1994) Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J Cell Biol 127:117–128

    Article  PubMed  CAS  Google Scholar 

  • Brown JA, Lutsep HL, Weinand M, Cramer SC (2006) Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58:464–473

    Article  PubMed  Google Scholar 

  • Brus-Ramer M, Carmel JB, Chakrabarty S, Martin JH (2007) Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury. J Neurosci 27:13793–13801

    Article  PubMed  CAS  Google Scholar 

  • Budzikowski AS, Vahid-Ansari F, Leenen FH (1998) Chronic activation of brain areas by high-sodium diet in Dahl salt-sensitive rats. Am J Physiol 274:H2046–H2052

    PubMed  CAS  Google Scholar 

  • Buitrago MM, Luft AR, Thakor NV, Blue ME, Hanley DF (2004) Effects of somatosensory electrical stimulation on neuronal injury after global hypoxia-ischemia. Exp Brain Res 158:336–344

    Article  PubMed  Google Scholar 

  • Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, Bejot Y, Deltour S, Jaillard A, Niclot P, Guillon B, Moulin T, Marque P, Pariente J, Arnaud C, Loubinoux I (2011) Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 10:123–130

    Article  PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  • Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Darsalia V, Heldmann U, Lindvall O, Kokaia Z (2005) Stroke-induced neurogenesis in aged brain. Stroke 36:1790–1795

    Article  PubMed  Google Scholar 

  • Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42:535–552

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93:14895–14900

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    Article  PubMed  CAS  Google Scholar 

  • Harvey RL, Winstein CJ (2009) Design for the everest randomized trial of cortical stimulation and rehabilitation for arm function following stroke. Neurorehabil Neural Repair 23:32–44

    PubMed  Google Scholar 

  • Hatten ME (2002) New directions in neuronal migration. Science 297:1660–1663

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z (2009) Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A 93:164–174

    Google Scholar 

  • Hurst W (2002) The heart, arteries and veins. Mc Graw-Hill, New York

    Google Scholar 

  • Jahanshahi A, Temel Y, Lim LW, Hoogland G, Steinbusch HW (2011) Close communication between the subependymal serotonergic plexus and the neurogenic subventricular zone. J Chem Neuroanat 42:297–303

    Article  PubMed  CAS  Google Scholar 

  • Jeong SH, Jun SB, Song JK, Kim SJ (2009) Activity-dependent neuronal cell migration induced by electrical stimulation. Med Biol Eng Comput 47:93–99

    Article  PubMed  Google Scholar 

  • Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189

    Article  PubMed  CAS  Google Scholar 

  • Jun SB, Hynd MR, Smith KL, Song JK, Turner JN, Shain W, Kim SJ (2007) Electrical stimulation-induced cell clustering in cultured neural networks. Med Biol Eng Comput 45:1015–1021

    Article  PubMed  Google Scholar 

  • Kim IS, Song YM, Cho TH, Pan H, Lee TH, Kim SJ, Hwang SJ (2011) Biphasic electrical targeting plays a significant role in schwann cell activation. Tissue Eng Part A 17:1327–1340

    Article  PubMed  CAS  Google Scholar 

  • Kleim JA, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D (2003) Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res 25:789–793

    Article  PubMed  Google Scholar 

  • Kojima J, Shinohara H, Ikariyama Y, Aizawa M, Nagaike K, Morioka S (1992) Electrically promoted protein production by mammalian cells cultured on the electrode surface. Biotechnol Bioeng 39:27–32

    Article  PubMed  CAS  Google Scholar 

  • Levy R, Ruland S, Weinand M, Lowry D, Dafer R, Bakay R (2008) Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J Neurosurg 108:707–714

    Article  PubMed  Google Scholar 

  • Li X, Kolega J (2002) Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. J Vasc Res 39:391–404

    Article  PubMed  CAS  Google Scholar 

  • Li S, Li H, Wang Z (2010) Orientation of spiral ganglion neurite extension in electrical fields of charge-balanced biphasic pulses and direct current in vitro. Hear Res 267:111–118

    Article  PubMed  Google Scholar 

  • Lichtenwalner RJ, Parent JM (2006) Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab 26:1–20

    Article  PubMed  CAS  Google Scholar 

  • Maehlen J, Nja A (1982) The effects of electrical stimulation on sprouting after partial denervation of guinea-pig sympathetic ganglion cells. J Physiol 322:151–166

    PubMed  CAS  Google Scholar 

  • McBain VA, Forrester JV, McCaig CD (2003) HGF, MAPK, and a small physiological electric field interact during corneal epithelial cell migration. Invest Ophthalmol Vis Sci 44:540–547

    Article  PubMed  Google Scholar 

  • McCaig CD, Allan DW, Erskine L, Rajnicek AM, Stewart R (1994) Growing nerves in an electric field. Neuroprotocols 4:134–141

    Article  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    Article  PubMed  Google Scholar 

  • McCaig CD, Song B, Rajnicek AM (2009) Electrical dimensions in cell science. J Cell Sci 122:4267–4276

    Article  PubMed  CAS  Google Scholar 

  • Mycielska ME, Djamgoz MB (2004) Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 117:1631–1639

    Article  PubMed  CAS  Google Scholar 

  • Nandam LS, Jhaveri D, Bartlett P (2007) 5-HT7, neurogenesis and antidepressants: a promising therapeutic axis for treating depression. Clin Exp Pharmacol Physiol 34:546–551

    Article  PubMed  CAS  Google Scholar 

  • Newton SS, Duman RS (2007) Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 21:715–725

    Article  PubMed  CAS  Google Scholar 

  • Nguyen JP, Lefaucheur JP, Decq P, Uchiyama T, Carpentier A, Fontaine D, Brugieres P, Pollin B, Feve A, Rostaing S, Cesaro P, Keravel Y (1999) Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlations between clinical, electrophysiological and anatomical data. Pain 82:245–251

    Article  PubMed  CAS  Google Scholar 

  • Osorio I, Frei MG (2009) Seizure abatement with single dc pulses: is phase resetting at play? Int J Neural Syst 19:149–156

    Article  PubMed  Google Scholar 

  • Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Plautz EJ, Barbay S, Frost SB, Friel KM, Dancause N, Zoubina EV, Stowe AM, Quaney BM, Nudo RJ (2003) Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res 25:801–810

    Article  PubMed  Google Scholar 

  • Puc M, Corovic S, Flisar K, Petkovsek M, Nastran J, Miklavcic D (2004) Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry 64:113–124

    Article  PubMed  CAS  Google Scholar 

  • Pullar CE, Isseroff RR, Nuccitelli R (2001) Cyclic AMP-dependent protein kinase A plays a role in the directed migration of human keratinocytes in a DC electric field. Cell Motil Cytoskelet 50:207–217

    Article  CAS  Google Scholar 

  • Rajnicek AM, McCaig CD, Gow NA (1994) Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth. J Bacteriol 176:702–713

    PubMed  CAS  Google Scholar 

  • Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch KP (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    Article  PubMed  CAS  Google Scholar 

  • Rosen GD, Jacobs KM, Prince DA (1998) Effects of neonatal freeze lesions on expression of parvalbumin in rat neocortex. Cereb Cortex 8:753–761

    Article  PubMed  CAS  Google Scholar 

  • Salimi I, Friel KM, Martin JH (2008) Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J Neurosci 28:7426–7434

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Hof PR (2000) Recommendations for straightforward and rigorous methods of counting neurons based on a computer simulation approach. J Chem Neuroanat 20:93–114

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130:813–831

    Article  PubMed  CAS  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Coughlin L, Porter RG, Tanzer L, Wurster RD, Marzo SJ, Jones KJ, Foecking EM (2009) Effects of electrical stimulation and gonadal steroids on rat facial nerve regenerative properties. Restor Neurol Neurosci 27:633–644

    PubMed  Google Scholar 

  • Steinbusch HW (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6:557–618

    Article  PubMed  CAS  Google Scholar 

  • Sundholm-Peters NL, Yang HK, Goings GE, Walker AS, Szele FG (2005) Subventricular zone neuroblasts emigrate toward cortical lesions. J Neuropathol Exp Neurol 64:1089–1100

    Article  PubMed  Google Scholar 

  • Tan SK, Janssen ML, Jahanshahi A, Chouliaras L, Visser-Vandewalle V, Lim LW, Steinbusch HW, Sharp T, Temel Y et al (2011) High frequency stimulation of the subthalamic nucleus increases c-fos immunoreactivity in the dorsal raphe nucleus and afferent brain regions. J Psychiatr Res 45:1307–1315

    Google Scholar 

  • Temel Y, Visser-Vandewalle V, van der Wolf M, Spincemaille GH, Desbonnet L, Hoogland G, Steinbusch HW (2004) Monopolar versus bipolar high frequency stimulation in the rat subthalamic nucleus: differences in histological damage. Neurosci Lett 367:92–96

    Article  PubMed  CAS  Google Scholar 

  • Temel Y, Visser-Vandewalle V, Kaplan S, Kozan R, Daemen MA, Blokland A, Schmitz C, Steinbusch HW (2006) Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res 1120:100–105

    Article  PubMed  CAS  Google Scholar 

  • Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA (2003) Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res 25:794–800

    Article  PubMed  Google Scholar 

  • Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM (2008) The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 108:132–138

    Article  PubMed  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991a) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl (Wien) 52:137–139

    Article  CAS  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991b) Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol 14:131–134

    Article  PubMed  CAS  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1993) Chronic motor cortex stimulation in patients with thalamic pain. J Neurosurg 78:393–401

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  • Westin JE, Janssen ML, Sager TN, Temel Y et al (2011) Automated gait analysis in bilateral Parkinsonian rats and the role of l-DOPA therapy. Behav Brain Res 226:519–528

    Google Scholar 

  • Whitman MC, Greer CA (2009) Adult neurogenesis and the olfactory system. Prog Neurobiol 89:162–175

    Article  PubMed  Google Scholar 

  • Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216:527–535

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, Ho KL, Morshead C, Chopp M (2004) Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab 24:441–448

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a Grant from the Hersenstichting Nederland (Dutch Brain Foundation). In addition, YT and AJ received grants from the European Society for Stereotactic and Functional Neurosurgery (ESSFN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Jahanshahi or Yasin Temel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Supplementary material 2 (TIFF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahanshahi, A., Schonfeld, L., Janssen, M.L.F. et al. Electrical stimulation of the motor cortex enhances progenitor cell migration in the adult rat brain. Exp Brain Res 231, 165–177 (2013). https://doi.org/10.1007/s00221-013-3680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3680-4

Keywords

Navigation