Skip to main content
Log in

Behavioral and neural correlates of normal aging effects on motor preparatory mechanisms of speech production and limb movement

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Normal aging is associated with decline of the sensorimotor mechanisms that support movement function in the human brain. In this study, we used behavioral and event-related potential (ERP) recordings to investigate the effects of normal aging on the motor preparatory mechanisms of speech production and limb movement. The experiment involved two groups of older and younger adults who performed randomized speech vowel vocalization and button press motor reaction time tasks in response to temporally predictable and unpredictable visual stimuli. Behavioral results revealed age-related slowness of motor reaction time only during speech production in response to temporally unpredictable stimuli, and this effect was accompanied by increased pre-motor ERP activities in older vs. younger adults during the speech task. These results indicate that motor preparatory mechanisms of limb movement during button press are not affected by normal aging, whereas the functional capacity of these mechanisms is reduced in older adults during speech production in response to unpredictable sensory stimuli. These findings suggest that the aging brain selectively compromises the motor timing of speech and recruits additional neural resources for motor planning and execution of speech, as indexed by the increased pre-motor ERP activations in response to temporally unpredictable vs. predictable sensory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alegre M, Gurtubay IG, Labarga A, Iriarte J, Malanda A, Artieda J (2003) Alpha and beta oscillatory changes during stimulus-induced movement paradigms: effect of stimulus predictability. NeuroReport 14:381–385. https://doi.org/10.1097/01.wnr.0000059624.96928.c0

    Article  PubMed  Google Scholar 

  • Bäckman L, Ginovart N, Dixon RA, Wahlin T-BR, Wahlin Å, Halldin C, Farde L (2000) Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry 157:635–637

    Article  PubMed  Google Scholar 

  • Balci F, Meck WH, Moore H, Brunner D (2009) Timing deficits in aging and neuropathology. In: Bizon JL, Wood A (eds) Animal models of human cognitive aging. Humana Press, Totowa, NJ, pp 161–201

    Google Scholar 

  • Bard C, Paillard J, Lajoie Y, Fleury M, Teasdale N, Forget R, Lamarre Y (1992) Role of afferent information in the timing of motor command: a comparative study with a deafferented patient. Neuropsychologia 30:201–206

    Article  CAS  PubMed  Google Scholar 

  • Barrett G, Shibasaki H, Neshige R (1986) Cortical potentials preceding voluntary movement: evidence for three periods of preparation in man. Electroencephalogr Clin Neurophysiol 63:327–339

    Article  CAS  PubMed  Google Scholar 

  • Behroozmand R, Liu H, Larson CR (2011) Time-dependent neural processing of auditory feedback during voice pitch error detection. J Cogn Neurosci 23:1205–1217

    Article  PubMed  Google Scholar 

  • Behroozmand R, Sangtian S, Korzyukov O, Larson CR (2016) A temporal predictive code for voice motor control: evidence from ERP and behavioral responses to pitch-shifted auditory feedback. Brain Res 1636:1–12. https://doi.org/10.1016/j.brainres.2016.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berchicci M, Lucci G, Pesce C, Spinelli D, Di Russo F (2012) Prefrontal hyperactivity in older people during motor planning. Neuroimage 62:1750–1760

    Article  PubMed  Google Scholar 

  • Berchicci M, Lucci G, Spinelli D, Di Russo F (2015) Stimulus onset predictability modulates proactive action control in a Go/No-go task. Front Behav Neurosci 9:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertelson P, Boons J-P (1960) Time uncertainty and choice reaction time. Nature 187:531–532

    Article  CAS  PubMed  Google Scholar 

  • Bevan W, Hardesty DL, Avant LL (1965) Response latency with constant and variable interval schedules. Percept Mot Skills 20:969–972

    Article  CAS  PubMed  Google Scholar 

  • Bherer L, Belleville S (2004) Age-related differences in response preparation: the role of time uncertainty. J Gerontol Ser B Psychol Sci Soc Sci 59:P66–P74

    Article  Google Scholar 

  • Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund H-J (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128:210–213

    Article  CAS  PubMed  Google Scholar 

  • Blakemore S-J, Wolpert DM, Frith CD (1998) Central cancellation of self-produced tickle sensation. Nat Neurosci 1:635

    Article  CAS  PubMed  Google Scholar 

  • Blakemore S-J, Wolpert D, Frith C (2000) Why can’t you tickle yourself? NeuroReport 11:R11–R16

    Article  CAS  PubMed  Google Scholar 

  • Chauvin JJ, Gillebert CR, Rohenkohl G, Humphreys GW, Nobre AC (2016) Temporal orienting of attention can be preserved in normal aging. Psychol Aging 31:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Chen X, Liu P, Huang D, Liu H (2012) Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization. BMC Neurosci 13:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Coull JT, Cheng R-K, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36:3

    Article  PubMed  Google Scholar 

  • Coull JT, Cotti J, Vidal F (2016) Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: dissociating prior from posterior temporal probabilities with fMRI. NeuroImage 141:40–51

    Article  PubMed  Google Scholar 

  • Deiber M-P, Ibañez V, Missonnier P, Rodriguez C, Giannakopoulos P (2013) Age-associated modulations of cerebral oscillatory patterns related to attention control. Neuroimage 82:531–546

    Article  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Diersch N, Cross ES, Stadler W, Schütz-Bosbach S, Rieger M (2012) Representing others’ actions: the role of expertise in the aging mind. Psychol Res 76:525–541

    Article  PubMed  Google Scholar 

  • Diersch N, Mueller K, Cross ES, Stadler W, Rieger M, Schutz-Bosbach S (2013) Action prediction in younger versus older adults: neural correlates of motor familiarity. PLoS One 8:e64195. https://doi.org/10.1371/journal.pone.0064195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diersch N, Jones AL, Cross ES (2016) The timing and precision of action prediction in the aging brain. Hum Brain Mapp 37:54–66. https://doi.org/10.1002/hbm.23012

    Article  PubMed  Google Scholar 

  • Dirnberger G, Lalouschek W, Lindinger G, Egkher A, Deecke L, Lang W (2000) Reduced activation of midline frontal areas in human elderly subjects: a contingent negative variation study. Neurosci Lett 280:61–64

    Article  CAS  PubMed  Google Scholar 

  • Eliades SJ, Wang X (2003) Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations. J Neurophysiol 89:2194–2207

    Article  PubMed  Google Scholar 

  • Gentilucci M, Volta RD (2008) Spoken language and arm gestures are controlled by the same motor control system. Q J Exp Psychol 61:944–957

    Article  Google Scholar 

  • Gentilucci M, Campione GC, Dalla Volta R, Bernardis P (2009) The observation of manual grasp actions affects the control of speech: a combined behavioral and Transcranial Magnetic Stimulation study. Neuropsychologia 47:3190–3202

    Article  PubMed  Google Scholar 

  • Haaland KY, Harrington DL, Grice JW (1993) Effects of aging on planning and implementing arm movements. Psychol Aging 8:617

    Article  CAS  PubMed  Google Scholar 

  • Haegens S, Luther L, Jensen O (2012) Somatosensory anticipatory alpha activity increases to suppress distracting input. J Cogn Neurosci 24:677–685

    Article  PubMed  Google Scholar 

  • Johansson R, Westling G (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res 71:59–71

    CAS  PubMed  Google Scholar 

  • Johari K, Behroozmand R (2017a) Premotor neural correlates of predictive motor timing for speech production and hand movement: evidence for a temporal predictive code in the motor system. Exp Brain Res 235:1439–1453

    Article  PubMed  Google Scholar 

  • Johari K, Behroozmand R (2017b) Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement. Hum Mov Sci 54:41–50

    Article  PubMed  Google Scholar 

  • Johari K, Behroozmand R (2018) Functional dissociation of temporal processing mechanisms during speech production and hand movement: an ERP study. Behav Brain Res 347:281–291

    Article  PubMed  Google Scholar 

  • Johari K, den Ouden D-B, Behroozmand R (2018) Effects of aging on temporal predictive mechanisms of speech and hand motor reaction time. Aging Clin Exp Res 30:1195–1202

    Article  PubMed  Google Scholar 

  • Karlin L (1959) Reaction time as a function of foreperiod duration and variability. J Exp Psychol 58:185

    Article  CAS  PubMed  Google Scholar 

  • Klemmer ET (1956) Time uncertainty in simple reaction time. J Exp Psychol 51:179

    Article  CAS  PubMed  Google Scholar 

  • Koppe G, Gruppe H, Sammer G, Gallhofer B, Kirsch P, Lis S (2014) Temporal unpredictability of a stimulus sequence affects brain activation differently depending on cognitive task demands. Neuroimage 101:236–244. https://doi.org/10.1016/j.neuroimage.2014.07.008

    Article  PubMed  Google Scholar 

  • Kotz SA, Schmidt-Kassow M (2015) Basal ganglia contribution to rule expectancy and temporal predictability in speech. Cortex 68:48–60

    Article  PubMed  Google Scholar 

  • Kuhn AA, Williams D, Kupsch A et al (2004) Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127:735–746. https://doi.org/10.1093/brain/awh106

    Article  PubMed  Google Scholar 

  • Lange K (2009) Brain correlates of early auditory processing are attenuated by expectations for time and pitch. Brain Cogn 69:127–137

    Article  PubMed  Google Scholar 

  • Li C-SR, Krystal JH, Mathalon DH (2005) Fore-period effect and stop-signal reaction time. Exp Brain Res 167:305–309

    Article  PubMed  Google Scholar 

  • Li J, Hu H, Chen N, Jones JA, Wu D, Liu P, Liu H (2018) Aging and sex influence cortical auditory-motor integration for speech control. Front Neurosci 12:749

    Article  PubMed  PubMed Central  Google Scholar 

  • Liotti M, Ramig L, Vogel D et al (2003) Hypophonia in Parkinson’s disease neural correlates of voice treatment revealed by PET. Neurology 60:432–440

    Article  CAS  PubMed  Google Scholar 

  • Loveless NE, Sanford AJ (1974) Effects of age on the contingent negative variation and preparatory set in a reaction-time task. J Gerontol 29:52–63

    Article  CAS  PubMed  Google Scholar 

  • Maess B, Schröger E, Widmann A (2016) High-pass filters and baseline correction in M/EEG analysis. Commentary on: “How inappropriate high-pass filters can produce artefacts and incorrect conclusions in ERP studies of language and cognition”. J Neurosci Methods 266:164–165

    Article  PubMed  Google Scholar 

  • Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res 21:139–170

    Article  Google Scholar 

  • Merchant H, Harrington DL, Meck WH (2013) Neural basis of the perception and estimation of time. Annu Rev Neurosci 36:313–336

    Article  CAS  PubMed  Google Scholar 

  • Mozley LH, Gur RC, Mozley PD, Gur RE (2001) Striatal dopamine transporters and cognitive functioning in healthy men and women. Am J Psychiatry 158:1492–1499

    Article  CAS  PubMed  Google Scholar 

  • Narayana S, Jacks A, Robin DA et al (2009) A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinson’s disease. Am J Speech Lang Pathol 18:146–161

    Article  PubMed  Google Scholar 

  • Nobre AC, Correa A, Coull JT (2007) The hazards of time. Curr Opin Neurobiol 17:465–470

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Pfeuty M, Ragot R, Pouthas V (2005) Relationship between CNV and timing of an upcoming event. Neurosci Lett 382:106–111

    Article  CAS  PubMed  Google Scholar 

  • Rubin DC (1999) Frontal-striatal circuits in cognitive aging: evidence for caudate involvement. Aging Neuropsychol Cogn 6:241–259

    Article  Google Scholar 

  • Sachin S, Kumaran SS, Singh S, Goyal V, Shukla G, Mahajan H, Behari M (2008) Functional mapping in PD and PSP for sustained phonation and phoneme tasks. J Neurol Sci 273:51–56

    Article  CAS  PubMed  Google Scholar 

  • Samaha J, Bauer P, Cimaroli S, Postle BR (2015) Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction. Proc Natl Acad Sci 112:8439–8444

    Article  CAS  PubMed  Google Scholar 

  • Schwartze M, Rothermich K, Kotz SA (2012) Functional dissociation of pre-SMA and SMA-proper in temporal processing. Neuroimage 60:290–298

    Article  PubMed  Google Scholar 

  • Seidler RD, Bernard JA, Burutolu TB et al (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34:721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  • Sterr A, Dean P (2008) Neural correlates of movement preparation in healthy ageing. Eur J Neurosci 27:254–260. https://doi.org/10.1111/j.1460-9568.2007.05975.x

    Article  PubMed  Google Scholar 

  • Stewart JC, Tran X, Cramer SC (2014) Age-related variability in performance of a motor action selection task is related to differences in brain function and structure among older adults. Neuroimage 86:326–334

    Article  PubMed  Google Scholar 

  • Thickbroom GW, Byrnes ML, Sacco P, Ghosh S, Morris IT, Mastaglia FL (2000) The role of the supplementary motor area in externally timed movement: the influence of predictability of movement timing. Brain Res 874:233–241. https://doi.org/10.1016/S0006-8993(00)02588-9

    Article  CAS  PubMed  Google Scholar 

  • Tomassini A, Ruge D, Galea JM, Penny W, Bestmann S (2015) The role of dopamine in temporal uncertainty. J Cogn Neurosci 28:96–110

    Article  PubMed  Google Scholar 

  • Tremblay P, Sato M, Deschamps I (2017) Age differences in the motor control of speech: an fMRI study of healthy aging. Hum Brain Mapp 38:2751–2771

    Article  PubMed  Google Scholar 

  • Turgeon M, Lustig C, Meck WH (2016) Cognitive aging and time perception: roles of Bayesian optimization and degeneracy. Front Aging Neurosci 8:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaden RJ, Hutcheson NL, McCollum LA, Kentros J, Visscher KM (2012) Older adults, unlike younger adults, do not modulate alpha power to suppress irrelevant information. Neuroimage 63:1127–1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallesi A, Shallice T, Walsh V (2007) Role of the prefrontal cortex in the foreperiod effect: TMS evidence for dual mechanisms in temporal preparation. Cereb Cortex 17:466–474

    Article  PubMed  Google Scholar 

  • Vallesi A, McIntosh AR, Shallice T, Stuss DT (2009a) When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring. J Cogn Neurosci 21:1116–1126

    Article  PubMed  Google Scholar 

  • Vallesi A, McIntosh AR, Stuss DT (2009b) Temporal preparation in aging: a functional MRI study. Neuropsychologia 47:2876–2881

    Article  PubMed  Google Scholar 

  • van Ede F, de Lange F, Jensen O, Maris E (2011) Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha-and beta-band oscillations. J Neurosci 31:2016–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Ede F, Szebényi S, Maris E (2014) Attentional modulations of somatosensory alpha, beta and gamma oscillations dissociate between anticipation and stimulus processing. Neuroimage 97:134–141

    Article  PubMed  Google Scholar 

  • Vieweg P, Stangl M, Howard LR, Wolbers T (2015) Changes in pattern completion–a key mechanism to explain age-related recognition memory deficits? Cortex 64:343–351. https://doi.org/10.1016/j.cortex.2014.12.007

    Article  PubMed  Google Scholar 

  • Volkow ND, Gur RC, Wang G-J et al (1998) Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 155:344–349

    Article  CAS  PubMed  Google Scholar 

  • Walter WG, Cooper R, Aldridge V, McCallum W, Winter A (1964) Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203:380–384

    Article  CAS  PubMed  Google Scholar 

  • Widmann A, Schröger E, Maess B (2015) Digital filter design for electrophysiological data–a practical approach. J Neurosci Methods 250:34–46

    Article  PubMed  Google Scholar 

  • Witney AG, Goodbody SJ, Wolpert DM (1999) Predictive motor learning of temporal delays. J Neurophysiol 82:2039–2048

    Article  CAS  PubMed  Google Scholar 

  • Wolpe N, Ingram JN, Tsvetanov KA et al (2016) Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits. Nat Commun 7:13034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolpert DM (1997) Computational approaches to motor control. Trends Cogn Sci 1:209–216

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128:2250–2259

    Article  PubMed  Google Scholar 

  • Yan JH, Thomas JR, Stelmach GE (1998) Aging and rapid aiming arm movement control. Exp Aging Res 24:155–168

    Article  CAS  PubMed  Google Scholar 

  • Yordanova J, Kolev V, Hohnsbein J, Falkenstein M (2004) Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: evidence from high-resolution event-related potentials. Brain 127:351–362

    Article  PubMed  Google Scholar 

  • Yu H, Sternad D, Corcos DM, Vaillancourt DE (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35:222–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanto TP, Pan P, Liu H, Bollinger J, Nobre AC, Gazzaley A (2011) Age-related changes in orienting attention in time. J Neurosci 31:12461–12470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs. Chris Rorden and Allen Montgomery for their feedback on this manuscript.

Funding

This research was supported by a Grant from the NIH/NIDCD, Grant Number: K01-DC015831 (PI: Behroozmand), and by the Graduate Scholar Award for Aging Research received by Karim Johari from the University of South Carolina. The funders had no role in study design, data collection, analysis, preparation of the manuscript, or decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

RB designed the research and KJ collected data for the experiments. KJ and RB analyzed the collected data. KJ, RB, and D-BO wrote the paper and all authors reviewed and approved the final draft.

Corresponding author

Correspondence to Roozbeh Behroozmand.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial, financial, or non-financial relationships that could be construed as a potential conflict of interest.

Ethics statement

This study was carried out in accordance with the recommendations of the University of South Carolina Institutional Review Board, with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the University of South Carolina Institutional Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johari, K., den Ouden, DB. & Behroozmand, R. Behavioral and neural correlates of normal aging effects on motor preparatory mechanisms of speech production and limb movement. Exp Brain Res 237, 1759–1772 (2019). https://doi.org/10.1007/s00221-019-05549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05549-4

Keywords

Navigation