Skip to main content
Log in

Optimization of ethanol extraction of antioxidative phenolic compounds from torrefied oak wood (Quercus serrata) using response surface methodology

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

A torrefaction treatment process followed by ethanol extraction was applied for extracting antioxidant components from oak wood. Response surface methodology (RSM) was applied to optimize the ethanol extraction conditions of antioxidant compounds from torrefied oak wood (severity factor Ro = 4.23). Response values were assessed such as total polyphenol content, total flavonoid content, and DPPH radical scavenging activity. Optimal extraction conditions were found as follows: ethanol concentration 69.15 %, extraction temperature 71.60 °C and processing time 70.15 min for total polyphenol content; ethanol concentration 66.93 %, extraction temperature 69.52 °C and time 66.09 min for total flavonoids content; ethanol concentration 68.18 %, extraction temperature 51.77 °C and time 74.22 min for DPPH radical scavenging activity. The experimental values agreed with those predicted within a 95 % confidence interval indicating the suitability of RSM in optimizing the ethanol extraction of antioxidant compounds from the torrefied oak wood. However, no significant correlation was found between antioxidant activity (DPPH), neither with total polyphenol content nor with total flavonoid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahajji A, Diouf P, Aloui F, Elbakali I, Perrin D, Merlin A, George B (2009) Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives. Wood Sci Technol 43(1):69–83

    Article  CAS  Google Scholar 

  • Castro E, Conde E, Moure A, Falqué E, Cara C, Ruiz E, Domínguez H (2008) Antioxidant activity of liquors from steam explosion of Olea europea wood. Wood Sci Technol 42:579–592

    Article  CAS  Google Scholar 

  • Chen WH, Kuo PC (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36(2):803–811

    Article  CAS  Google Scholar 

  • Chirinos R, Rogez H, Campos D, Pedreschi R, Larondelle Y (2007) Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz and Pavón) tubers. Sep Purif Technol 55(2):217–225

    Article  CAS  Google Scholar 

  • Devi RR, Jayalekshmy A, Arumughan C (2007) Antioxidant efficacy of phytochemical extracts from defatted rice bran in the bulk oil system. Food Chem 104:658–664

    Article  CAS  Google Scholar 

  • Duh PD, Yen GC, Yen WJ, Chang LW (2001) Antioxidant effects of water extracts from barley (Hordeum vulgare L.) prepared under different roasting temperatures. J Agric Food Chem 49:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimzadeh MA, Enayatifard R, Khalili M, Ghaffarloo M, Saeedi M, Yazdani Charati J (2014) Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran J Pharm Res 13(3):1041–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shourbagy GA, El-Zahar KM (2014) Oxidative stability of ghee as affected by natural antioxidants extracted from food processing wastes. Ann Agric Sci 59(2):213–220

    Google Scholar 

  • Garrote G, Cruz JM, Moure A, Domínguez H, Parajó JC (2004) Antioxidant activity of byproducts from the hydrolytic processing of selected lignocellulosic materials. Trends Food Sci Technol 15:191–200

    Article  CAS  Google Scholar 

  • Ghasemi K, Ghasemi Y, Ebrahimzadeh MA (2009) Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci 22(3):277–281

    CAS  PubMed  Google Scholar 

  • Gong L, Huang L, Zhang Y (2012) Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity. J Agric Food Chem 60:7177–7184

    Article  CAS  PubMed  Google Scholar 

  • Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Technol 100(2):710–716

    Article  CAS  PubMed  Google Scholar 

  • Hamid MRY, Ghani MHA, Ahmad S (2012) Effect of antioxidants and fire retardants as mineral fillers on the physical and mechanical properties of high loading hybrid biocomposites reinforced with rice husks and sawdust. Ind Crops Prod 40:96–102

    Article  CAS  Google Scholar 

  • Heitz M, Carrasco F, Rubio M, Brown A, Chornet E (1987) Physicochemical characterization of lignocellulosic substrates pretreated via autohydrolysis: an application to tropical woods. Biomass 13:255–273

    Article  CAS  Google Scholar 

  • Hou WC, Lin RD, Cheng KT, Hung YT, Cho CH, Chen CH, Hwang SY, Lee MH (2003) Free radical scavenging activity of Taiwanese native plants. Phytomedicine 10:170–175

    Article  CAS  PubMed  Google Scholar 

  • Jaina S, Jainc A, Jaina S, Malviya N, Jain V, Kumar D (2015) Estimation of total phenolic, tannins, and flavonoid contents and antioxidant activity of Cedrus deodara heart wood extracts. Egypt Pharm J 14:10–14

    Article  Google Scholar 

  • Lee SC, Kim JH, Jeong SM, Kim DR, Ha JU, Nam KC, Ahn DU (2003) Effect of far-infrared radiation on the antioxidant activity of rice hulls. J Agric Food Chem 51:4400–4403

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Wong CC, Cheng KW, Chen F (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. Lebenson Wiss Technol 41(3):385–390

    Article  CAS  Google Scholar 

  • Makris DP, Boskou G, Andrikopoulos NK (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal 20:125–132

    Article  CAS  Google Scholar 

  • Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS, Leitao SG (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130

    Article  CAS  PubMed  Google Scholar 

  • Niwa Y, Miyachi Y (1986) Antioxidant action of natural health products and Chinese herbs. J Inflamm 10:79–91

    Article  CAS  Google Scholar 

  • Nobre CP, Raffin FN, Moura TF (2005) Standardization of extracts from Momordica charantia L. (Cucurbitaceae) by total flavonoids content determination. Acta Farm Bonaer 24(4):526–566

    Google Scholar 

  • Palmqvist E, Hägerdal H (2000) Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Pokorny J (2007) Are natural antioxidants better- and safer-than synthetic antioxidants? Eur J Lipid Sci Technol 109:629–642

    Article  CAS  Google Scholar 

  • Shoulaifar TK, DeMartini N, Willfor S, Pranovich A, Smeds AI, Virtanen TAP, Maunu SL, Verhoeff F, Kiel JHA, Hupa M (2014) Impact of torrefaction on the chemical structure of birch wood. Energy Fuels 28:3863–3872

    Article  Google Scholar 

  • Silva EM, Rogez H, Larondelle Y (2007) Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep Purif Technol 55:381–387

    Article  CAS  Google Scholar 

  • Sivonen H, Maunu SL, Sundholm F, Jämsa S, Vitaniemi H (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  CAS  Google Scholar 

  • Sun Y, Xu W, Zhang W, Hu Q, Zeng X (2011) Optimizing the extraction of phenolic antioxidants from kudingcha made from Ilex kudingcha C.J. Tseng by using response surface methodology. Sep Purif Technol 78:311–320

    Article  CAS  Google Scholar 

  • Tan CH, Ghazali HM, Kuntom A, Tan CP, Ariffin AA (2009) Extraction and physicochemical properties of low free fatty acid crude palm oil. Food Chem 113(2):645–650

    Article  CAS  Google Scholar 

  • Vázquez G, Santos J, Freire MS, Antorrena G, González-Álvarez J (2012) Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Sci Technol 46:443–457

    Article  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant Activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Ven CVD, Gruppen H, Bont DBAD, Voragen AGJ (2002) Optimisation of angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. Int Dairy J 12:813–820

    Article  Google Scholar 

  • Wanyo P, Meeso N, Siriamornpun S (2014) Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem 157:457–463

    Article  CAS  PubMed  Google Scholar 

  • Westcott ND, Muir AD (1998) Process for extracting lignans from flaxseed. US Patent 5,705,618

  • Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M (2002) Free radical scavenging properties of wheat extracts. J Agric Food Chem 50:1619–1624

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Li D, Wang LJ, Ozkan N, Chen XD, Maoa ZH, Yang HZ (2007) Optimization of ethanol–water extraction of lignans from flaxseed. Sep Purif Technol 57:17–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out with the support of “Forest Science & Technology Projects (Project No. S211315L010140)” provide by Korea Forest Service, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Kyung Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J., Park, HM. & Yang, JK. Optimization of ethanol extraction of antioxidative phenolic compounds from torrefied oak wood (Quercus serrata) using response surface methodology. Wood Sci Technol 50, 1037–1055 (2016). https://doi.org/10.1007/s00226-016-0846-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0846-9

Keywords

Navigation