Skip to main content
Log in

Analysis of the heat transfer at the tool–workpiece interface in machining: determination of heat generation and heat transfer coefficients

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper deals with the modelling and identification of the heat exchange at the tool–workpiece interface in machining. A thermomechanical modelling has been established including heat balance equations of the tool–workpiece interface which take into account the heat generated by friction and the heat transfer by conduction due to the thermal contact resistance. The interface heat balance equations involve two coefficients: heat generation coefficient (HGC) of the frictional heat and heat transfer coefficient (HTC) of the heat conduction (inverse of the thermal contact resistance coefficient). Using experimental average heat flux in the tool, estimated for several cutting speeds, an identification procedure of the HGC–HTC couple, involved in the established thermomechanical FE-based modelling of the cutting process, has been proposed, which gives the numerical heat flux equal the measured one for each cutting speed. Using identified values of the HGC–HTC couple, evolution laws are proposed for the HGC as function of cutting speed, and then as function of sliding velocity at the tool–workpiece interface. Such laws can be implemented for instance in a Finite Element code for machining simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(V_{c}\) :

Cutting speed (m/min)

\(f\) :

Feed rate (mm/rev)

\(w\) :

Depth of cut (mm)

\(\alpha\) :

Tool rake angle (°)

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x}\) :

Vector position

\(p_{w}\), \(p_{t}\) :

Points in the workmaterial and tool, respectively

t :

Time or cutting time (s)

\(\Omega_{w}\), \(\Omega_{t}\) :

Workmaterial and tool domains, respectively

\(\partial \Omega_{w}\), \(\partial \Omega_{t}\) :

Workmaterial and tool boundaries, respectively

\(\partial \Omega_{c}\) :

Tool–workpiece contact interface

T :

Temperature (°C)

\(T_{0}\) :

Reference ambient temperature (°C)

\(T_{m}\) :

Workmaterial melting temperature (°C)

\(T_{w}\), \(T_{t}\) :

Temperatures, respectively, of workpiece and tool at the tool–workpiece interface (°C)

\(T_{tool}\) :

Average tool rake face temperature (°C)

\(\lambda\) :

Thermal conductivity (W/m/°C)

\(c_{p}\) :

Specific heat capacity (J/kg/°C)

\(\alpha\) :

Thermal expansion (µm/m/°C)

\(\eta_{p}\) :

Plastic work conversion factor (Taylor-Quinney factor)

\(\beta\) or HGC:

Heat generation coefficient (fraction of the friction energy generated in the tool side)

\(h\) or HTC:

Heat transfer coefficient for the tool–workpiece interface (kW/m2/°C)

\(\eta_{f}\) :

Frictional work conversion factor

\(\dot{q}_{v}\) :

Volumetric heat generation in the workmaterial (W/m3)

\(\dot{q}_{p}\) :

Volumetric heat generation due to plastic work (W/m3)

\(\dot{q}_{f}\) :

Heat generation by friction at the tool–workpiece interface (W/m2)

\(\dot{q}_{c}\) :

Heat conduction flux density at the tool–workpiece interface (W/m2)

\(\dot{q}_{ \to tool}\) :

Heat flux density in the tool at the tool–workpiece interface (W/m2)

\(\dot{q}_{ \to workpiece}\) :

Heat flux density in the workpiece at the tool–workpiece interface (W/m2)

\(\dot{Q}_{ \to tool}\) :

Average heat flux in the tool (W)

\(\dot{Q}_{num}\) :

Numerical (from FE) average heat flux in the tool (W)

\(\varvec{\sigma}\) :

Cauchy stress tensor (MPa)

\(f_{v}\) :

Body force density (N/m3)

\(\textit{\"{u}}\) :

Acceleration (m/s2)

\(\rho\) :

Material density (kg/m3)

\(E\), \(\nu\) :

Young modulus (GPa) and Poisson’s ratio

\(A\), \(B\), \(C\), \(m\),\(n\) :

Workmaterial parameters of Johnson–Cook flow stress law

\(\bar{\varepsilon }^{p}\) :

von Mises equivalent plastic strain

\(\dot{\bar{\varepsilon }}^{p}\) :

von Mises equivalent plastic strain-rate

\(\dot{\bar{\varepsilon }}_{0}\) :

Reference equivalent plastic strain-rate

\(\bar{\sigma }\) :

von Mises equivalent stress (MPa)

\(d\) :

Damage variable

\(\tilde{\varvec{\sigma }}\) :

Effective stress (MPa)

\(\sigma_{n}\) :

Normal friction stress (MPa)

\(\tau_{f}\) :

Shear friction stress (MPa)

\(\mu\) :

Friction coefficient

\(\tau_{\hbox{max} }\) :

Shear stress limit (MPa)

\(V_{s}\) :

Average sliding velocity at the tool–workpiece interface (m/s)

References

  1. Werschmoeller D, Li X (2011) Measurement of tool internal temperatures in the tool–chip contact region by embedded micro thin film thermocouples. J Manuf Process 13:147–152

    Article  Google Scholar 

  2. Barlier C, Lescalier C, Mosian A (1997) Continuous flank wear measurement of turning tools by integrated microthermocouple. Ann CIRP 46(1):35–38

  3. Dinc C, Lazoglu I, Serpenguzel A (2008) Analysis of thermal fields in orthogonal machining with infrared imaging. J Mater Process Technol 198:147–154

    Article  Google Scholar 

  4. Kwon P, Schiemann T, Kountanya R (2001) An inverse estimation scheme to measure steady-state tool–chip interface temperatures using an infrared camera. Int J Mach Tools Manuf 41:1015–1030

    Article  Google Scholar 

  5. Dörr J, Mertens Th, Engering G, Lahres M (2003) In-situ temperature measurement to determine the machining potential of different tool coatings. Surf Coat Technol 174–175:389–392

    Article  Google Scholar 

  6. Jaspers SPFC, Dautzenberg JH, Taminiau DA (1998) Temperature measurement in orthogonal metal cutting. Int J Adv Manuf Technol 14:7–12

    Article  Google Scholar 

  7. Trigger KJ, Chao BT (1951) An analytical evaluation of metal cutting temperatures. Trans ASME 73:57–68

    Google Scholar 

  8. Hahn RS (1951) On the temperature developed at the shear plane in the metal cutting process. In: Proceedings of first US national congress of applied mechanics, pp 661–666

  9. Loewen EG, Shaw MC (1954) On the analysis of cutting tool temperatures. Trans ASME 71:217–231

    Google Scholar 

  10. Leone WC (1954) Distribution of shear zone heat in metal cutting. Trans ASME 76:121–125

    Google Scholar 

  11. Boothroyd G (1963) Temperatures in orthogonal metal cutting. Proc Inst Mech Eng 177:789–810

    Article  Google Scholar 

  12. Umbrello D, Filice L, Rizzuti S, Micari F, Settineri L (2007) On the effectiveness of finite element simulation of orthogonal cutting with particular reference to temperature prediction. J Mater Process Technol 189:284–291

    Article  Google Scholar 

  13. Reznikov AN (1981) Thermophysical aspects of metal cutting processes. Mashinostroenie, Moscow

    Google Scholar 

  14. Grzesik W, Nieslony P (2003) A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools. Int J Mach Tools Manuf 43:1311–1317

    Article  Google Scholar 

  15. Shaw MC (1989) Metal cutting principles. Clarendon Press, Oxford

    Google Scholar 

  16. Kato T, Fujii H (1999) Energy partition in conventional surface grinding. ASME Trans J Manuf Sci Eng 121:393–398

    Article  Google Scholar 

  17. Komanduri R, Hou ZB (2001) Thermal modelling of the metal cutting process part II: temperature rise distribution due to frictional heat source at the tool–chip interface. Int J Mech Sci 43:57–88

    Article  Google Scholar 

  18. Huang Y, Liang SY (2005) Cutting temperature modelling based on non-uniform heat intensity and partition ratio. Mach Sci Technol 9:301–323

    Article  Google Scholar 

  19. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. Proceed R Soc NSW 76:203–224

    Google Scholar 

  20. Hou ZB, Komanduri R (2000) General solutions for stationary/moving plane heat source problems in manufacturing and tribology. Int J Heat Mass Transf 43:1679–1698

    Article  MATH  Google Scholar 

  21. Laraqi N (1996) Phénomène de constriction thermique dans les contacts glissants. Int J Heat Mass Transf 39(17):3717–3724

    Article  Google Scholar 

  22. Laraqi N, Bairi A (2002) Theory of thermal resistance between solids with randomly sized and located contacts. Int J Heat Mass Transf 45:4175–4180

    Article  MATH  Google Scholar 

  23. Bourouga B, Bardon JP (1998) Thermal contact resistance at the interface of double tubes assembled by plastic deformation. Exp Thermal Fluid Sci 18:168–181

    Article  Google Scholar 

  24. Bourouga B, Goizet V, Bardon JP (2003) Predictive model of dynamic thermal contact resistance adapted to the workpiece–die interface during hot forging process. Int J Heat Mass Transf 46:565–576

    Article  MATH  Google Scholar 

  25. Le Meur G, Bourouga B, Bardon JP (2006) Microscopic analysis of interfacial electrothermal phenomena—definition of a heat generation factor. Int J Heat Mass Transf 49:387–401

    Article  MATH  Google Scholar 

  26. Chantrenne P, Raynaud M (2001) Study of a macroscopic sliding contact thermal model from microscopic models. Int J Therm Sci 40(7):603–621

    Article  Google Scholar 

  27. Chantrenne P, Raynaud M (1997) A microscopic thermal model for dry sliding contact. Int J Heat Mass Transf 40(5):1083–1094

    Article  MATH  Google Scholar 

  28. Chantrenne P (2008) Multiscale simulations: application to the heat transfer simulation of sliding solids. IntJ Mater Form 1:31–37

    Article  Google Scholar 

  29. Akbar F, Mativenga PT, Sheikh MA (2007) An investigation of the tool–chip interface temperature and heat partition in high-speed machining of AISI/SAE 4140 steel with TiN-coated tool. In: Proceedings of the 35th international MATADOR conference, vol 10, pp 215–218

  30. Abukhshim NA, Mativenga PT, Sheikh MA (2005) Investigation of heat partition in high speed turning of high strength alloy steel. Int J Mach Tools Manuf 45:1687–1695

    Article  Google Scholar 

  31. Mabrouki T, Rigal JF (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176:214–221

    Article  Google Scholar 

  32. Atlati S, Haddag B, Nouari M, Zenasni M (2011) Analysis of a new Segmentation Intensity Ratio SIR to characterize the chip segmentation process in machining ductile metals. Int J Mach Tools Manuf 51:687–700

    Article  Google Scholar 

  33. Deshpande A, Madhavan V (2012) A novel approach to accelerate attainment of thermal steady state in coupled thermomechanical analysis of machining. Int J Heat Mass Transf 55(13–14):3869–3884

    Article  Google Scholar 

  34. Haddag B, Kagnaya T, Nouari M, Cutard T (2013) A new heat transfer analysis in machining based on two steps of 3D finite element modelling and experimental validation. Heat Mass Transf 49(1):129–145

    Article  Google Scholar 

  35. Battaglia JL, Le Lay L, Batsale JC, Oustaloup A, Cois O (2000) Heat flux estimation through inverted non-integer identification models. Int J Therm Sci 39(3):374–389

    Article  Google Scholar 

  36. Battaglia JL, Elmoussami H, Puigsegur L (2002) Thermal modelling of a milling tool: a noninteger system identification approach. C R Méc 33:857–864

    Article  Google Scholar 

  37. Battaglia JL, Puigsegur L, Kusiak A (2004) Représentation non entière du transfert de chaleur par diffusion. Utilité pour la caractérisation et le contrôle non destructif thermique. Int J Therm Sci 43:69–85

    Article  Google Scholar 

  38. Rech J, Kusiak A, Battaglia JL (2004) Tribological and thermal functions of cutting tool coatings. Surf Coat Technol 186:364–371

    Article  Google Scholar 

  39. Kusiak A, Battaglia JL, Marchal R (2005) Influence of CrN coating in wood machining from heat flux estimation in the tool. Int J Therm Sci 44:289–301

    Article  MATH  Google Scholar 

  40. Oustaloup A (1995) La dérivation non entière: théorie, synthèse et applications. Editions Hermès, Paris

    Google Scholar 

  41. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48

    Article  Google Scholar 

  42. Abaqus V6.9 (2009) Dassault Systems Simulia

  43. Lemaitre J, Chaboche JL (1985) Mécanique des matériaux solides. Editions Dunod, Paris

    Google Scholar 

  44. Haddag B, Abed-Meraim F, Balan T (2009) Strain localization analysis using a large deformation anisotropic elastic–plastic model coupled with damage. Int J Plast 25(10):1970–1996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Haddag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddag, B., Atlati, S., Nouari, M. et al. Analysis of the heat transfer at the tool–workpiece interface in machining: determination of heat generation and heat transfer coefficients. Heat Mass Transfer 51, 1355–1370 (2015). https://doi.org/10.1007/s00231-015-1499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1499-1

Keywords

Navigation