Skip to main content
Log in

Simulation and optimization of Al–Fe aerospace alloy processed by laser surface remelting using geometric Multigrid solver and experimental validation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Al–1.5 wt% Fe alloy was irradiate by Yb-fiber laser beam using the laser surface remelting (LSR) technique, generating weld fillets that covered the whole surface of the sample. The laser-treatment showed to be an efficient technology for corrosion resistance improvements. In this study, the finite element method was used to simulate the solidification processes by LSR technique. The method Multigrid was employed in order to reduce the CPU time, which is important to the viability for industrial applications. Multigrid method is a technique very promising of optimization that reduced drastically the CPU time. The result was highly satisfactory, because the CPU time has fallen dramatically in comparison when it was not used Multigrid method. To validate the result of numerical simulation with the experimental result was done the microstructural characterization of laser-treated layer by the optical microscopy and SEM techniques and however, that both results showing be consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pariona MM, Teleginski V, Santos K, Machado S, Zara AJ, Zurba NK, Riva R (2012) Yb-fiber laser beam effects on the surface modification of Al–Fe aerospace alloy obtaining weld filet structures, low fine porosity and corrosion resistance. Surf Coat Technol 206:2293–2301. doi:10.1016/j.surfcoat.2011.10.007

    Article  Google Scholar 

  2. Pariona MM, Teleginski V, Santos K, Santos ELR, Lima AAOC, Riva R (2012) AFM study of the effects of laser surface remelting on the morphology of Al–Fe aerospace alloys. Mater Charact 74:64–76. doi:10.1016/j.matchar.2012.08.011

    Article  Google Scholar 

  3. Pariona MM, Teleginski V, Santos K, Lima AAOC, Zara AJ, Micene KT, Riva R (2013) Influence of laser surface treated on the characterization and corrosion behavior of Al–Fe aerospace alloys. Appl Surf Sci 276:76–85. doi:10.1016/j.apsusc.2013.03.025

    Article  Google Scholar 

  4. Miyazaki T, Giedt WH (1982) Heat transfer from an elliptical cylinder moving through an infinite plate applied to electron beam welding. Int J Heat Mass Transf 24:807–814

    Google Scholar 

  5. Liu X, Pang M, Zhang ZG, Tan JS, Zhu GX, Wang MD (2012) Numerical simulation of stress field for laser thermal loading on piston. Opt Laser Technol 44:1636–1640. doi:10.1016/j.optlastec.2011.12.045

    Article  Google Scholar 

  6. Cho W, Na SJ, Thomy C, Vollertsen F (2012) Numerical simulation of molten pool dynamics in high power disk laser welding. J Mater Process Technol 212:262–275. doi:10.1016/j.jmatprotec.2011.09.011

    Article  Google Scholar 

  7. Bessroura ABJ, Masseb J, Bouhafsa M, Barrallier L (2010) Finite element simulation of magnesium alloys laser beam welding. J Mater Process Technol 210:1131–1137. doi:10.1016/j.jmatprotec.2010.02.023

    Article  Google Scholar 

  8. Bertelli F, Meza ES, Goulart PR, Cheung N, Riva R, Garcia A (2011) Laser remelting of Al–1.5 wt% Fe alloy surfaces: numerical and experimental analyses. Opt Lasers Eng 49:490–497. doi:10.1016/j.optlaseng.2011.01.007

    Article  Google Scholar 

  9. Abderrazak K, Kriaa W, Salem WB, Mhiri H, Lepalec G, Autric M (2009) Numerical and experimental studies of molten pool formation during an interaction of a pulse laser (Nd:YAG) with a magnesium alloy. Opt Laser Technol 41:470–480. doi:10.1016/j.optlastec.2008.07.012

    Article  Google Scholar 

  10. Yilbas BS, Arif AFM, Karatas C, Raza K (2009) Laser treatment of aluminum surface: analysis of thermal stress field in the irradiated region. J Mater Process Technol 209:77–88. doi:10.1016/j.jmatprotec.2008.01.047

    Article  Google Scholar 

  11. Briggs WL, Henson VE, Mccormick SF (2000) A Multigrid tutorial, 2nd edn. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  12. Wesseling P (1992) An introduction to Multigrid methods. Wiley, Philadelphia

    MATH  Google Scholar 

  13. Fedorenko RP (1964) On the speed of convergence of an iteration process. USSR Comput Math Math Phys 4:227–235. doi:10.1016/0041-5553(64)90253-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Brandt A (1977) Multi-level adaptive solutions to boundary-value problems. Math Comput 31:333–390. doi:10.1090/S0025-5718-1977-0431719-X

    Article  MathSciNet  MATH  Google Scholar 

  15. Trottenberg U, Oosterlee CA, Schüller A (2001) Multigrid. Academic Press, St Augustin

    MATH  Google Scholar 

  16. Karniadakis GE (1990) Spectral element-fourier methods for turbulent flows, computer methods in applied mechanics and engineering. North-Holland 80:367–380

    MathSciNet  MATH  Google Scholar 

  17. Hussaini MY, Zang TA (1987) Spectral methods in fluid dynamics. Ann Rev Fluid Mech 19:339–367

    Article  MATH  Google Scholar 

  18. Bag S, De A (2010) Computational modelling of conduction mode laser welding process. Laser welding. InTech., Open access. doi:10.5772/256

  19. THERMO CALC software (2010) Stockholm, Sweden

  20. Users Handbook COMSOL Multiphysics. v. 4.2a (2012)

  21. COMSOL Release notes 3.3a (2007) Friction stir welding

  22. Hughes TJR (2000) The finite element method—linear static and dynamic finite element analysis. Dover Publications, Mineola

    MATH  Google Scholar 

  23. Reddye JN, Gartling DK (1994) The finit element method in heat transfer and fluid dynamics. CRC Press, Boca Raton

    Google Scholar 

  24. Guermouche A, Yves J, L’Excellent Utard G (2003) Impact of reordering on the memory of a multifrontal solver. Parallel Comput 29:1191–1218. doi:10.1016/S0167-8191(03)00099-1

    Article  MathSciNet  Google Scholar 

  25. Burden RL, Faires JD (2010) Numerical analysis. Brooks-Cole, 9th edn. Cengage Learning, Australia

  26. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  27. Pei YY, Hosson JTM (2000) Functionally graded materials produced by laser cladding. Acta Mater 48:2617–2624. doi:10.1002/9781118787694.ch19

    Article  Google Scholar 

  28. Man HC, Yang YQ, Lee WB (2004) Laser induced reaction synthesis of TiC + WC reinforced metal matrix composites coatings on Al 6061. Surf Coat Technol 185:74–80. doi:10.1016/j.surfcoat.2003.10.132

    Article  Google Scholar 

  29. Su HJ, Zhang J, Ren Q, Deng YF, Liu L, Fu HZ, Soh AK (2013) Laser zone remelting of Al2O3/Er3Al5O12 bulk oxide in situ composite thermal emission ceramics: influence of rapid solidification. Mater Res Bull 48:544–550. doi:10.1016/j.materresbull.2012.11.052

    Article  Google Scholar 

  30. Manzano L (1999) Implementation of multigrid for aerodynamic computations on multi-block grids. Dissertation, Department of aerospace science and engineering, University of Toronto

  31. Chisholm T (1997) Multigrid acceleration of an approximately-factored algorithm for steady aerodynamic flows. Dissertation, University of Toronto

  32. Suero R, Pinto MAV, Marchi CH, Araki LK, Alves AC (2012) Analysis of algebraic Multigrid parameters for two-dimensional steady-state heat diffusion equations. Appl Math Model 36:2996–3006. doi:10.1016/j.apm.2011.09.088

    Article  MathSciNet  MATH  Google Scholar 

  33. Oliveira F, Pinto MAV, Marchi CH, Araki LK (2012) Optimized partial semicoarsening Multigrid algorithm for heat diffusion problems and anisotropic grids. Appl Math Model 36:4665–4676. doi:10.1016/j.apm.2011.11.084

    Article  MathSciNet  MATH  Google Scholar 

  34. Pinto MAV (2006) Multigrid method behavior problems in heat transfer. PhD Thesis, UFPR, Curitiba, PR-Brazil

  35. Rabi JA, De Lemos MJS (1998) The Effects of Peclet number and cycling strategy on Multigrid numerical solutions of convective-advective problems. In: 7th, AIAAIASME international thermics and HT conference, Paper AIAA-98-2584, Albuquerque, New Mexico, USA

  36. Stüben K (1999) Algebraic Multigrid (AMG): an introduction with applications. In: GMD-report 70

  37. Moro Filho RC (2004) Technical application of multigrid in computational heat transfer, XXV Iberian Latin_American congress on computational methods in engineering

  38. Gaspar FJ, Gracia JL, Lisbona FJ, Rodrigo C (2009) On geometric Multigrid methods for triangular grids using three-coarsening strategy. Appl Numer Math 59:1693–1708. doi:10.1016/j.apnum.2009.01.003

    Article  MathSciNet  MATH  Google Scholar 

  39. Galante G (2006) Parallel Multigrid methods on structured meshes non-simulation applied problems of computational fluid dynamics na heat transfer. Dissertation UFRGS, Porto Alegre, RS, Brazil

  40. Teleginski V, Riva R, Pariona MM (2012) Avaliação do estresse térmico no tratamento de refusão superficial a laser da liga Al–1.5% Fe através da técnica dos elementos finitos. In: 67º Congresso ABM, 2012, Rio de Janeiro. Anais do 67º Congresso Anual da ABM 3518–3527

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Brazilian research funding agencies: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), FA (Fundação Araucária, Paraná, Brazil) and Dedalo (Development Laboratory of Lasers and Optics Applications) of CTA-IEAv, São José dos Campos, São Paulo, Brazil. The authors would also thank Luciano K. Araki for reviewing the text and for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés Meza Pariona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pariona, M.M., de Oliveira, F., Teleginski, V. et al. Simulation and optimization of Al–Fe aerospace alloy processed by laser surface remelting using geometric Multigrid solver and experimental validation. Heat Mass Transfer 52, 1037–1049 (2016). https://doi.org/10.1007/s00231-015-1619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1619-y

Keywords

Navigation