Skip to main content
Log in

Lattice Boltzmann technique for heat transport phenomena coupled with melting process

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar–Gross–Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

c :

Lattice speed

c p :

Specific heat at constant pressure

c s :

Sound speed of the lattice

e i :

Discrete lattice velocity in direction i

En :

Total enthalpy

En l :

Total enthalpy of the liquid phase

En s :

Total enthalpy of the solid phase

f l :

Volume fraction of liquid

f i :

Particle distribution function in direction i for velocity field

\(f_{i}^{eq}\) :

Equilibrium distribution function in direction i for velocity field

F :

Buoyancy force

g :

Acceleration due to gravity

g i :

Particle distribution function in direction i for temperature field

\(g_{i}^{eq}\) :

Equilibrium distribution function in direction i for temperature field

l :

Appropriate length scale

L f :

Latent heat of phase change

Nu :

Nusselt number

p :

Pressure

Pr:

Prandtl number (ν/α)

Ra :

Rayleigh number (ΔTl 3/να)

Ste :

Stefan number (c p ΔT/L f )

t :

Time

T :

Temperature

T 0 :

Initial temperature

T b :

Temperature of the left wall

T m :

Melting temperature

u :

Velocity

Δt :

Lattice time step

Δx :

Lattice space

α :

Thermal diffusivity

β :

Volume expansivity

ε :

Small expansion parameter

κ :

Thermal conductivity

ν :

Kinematic viscosity

ω i :

Weight coefficient in direction i

Ω:

Collision operator

τ, τ f , τ g :

Relaxation time

*:

Dimensionless symbols

k :

Iteration

n :

Time step

References

  1. Bertrand O, Binet B, Combeau H, Couturier S, Delannoy Y, Gobin D, Lacroix M, Quere PL, Medale M, Mencinger J, Sadat H, Vieira G (1999) Melting driven by natural convection a comparison exercise: first results. Int J Therm Sci 38(1):5–26

    Article  Google Scholar 

  2. Tan L, Zabaras N (2006) A level set simulation of dendritic solidification with combine features of front-tracking and fixed-domain methods. J Comput Phys 211(1):36–63

    Article  MathSciNet  MATH  Google Scholar 

  3. Jin C, Xu K (2006) An adaptive grid method for two-dimensional viscous flows. J Comput Phys 218(1):68–81

    Article  MathSciNet  MATH  Google Scholar 

  4. Usmani AS, Lewis RW, Seetharamu KN (1992) Finite element modelling of natural-convection-controlled change of phase. Int J Numer Methods Fluids 14(9):1019–1036

    Article  MATH  Google Scholar 

  5. Javierre E, Vuik C, Vermolen FJ, Van der Zwaag S (2006) A comparison of numerical models for one-dimensional Stefan problems. J Comput Appl Math 192(2):445–459

    Article  MathSciNet  MATH  Google Scholar 

  6. Mencinger J (2004) Numerical simulation of melting in two-dimensional cavity using adaptive grid. J Comput Phys 198(1):243–264

    Article  MATH  Google Scholar 

  7. Wolfram S (1986) Theory and applications of cellular automata. World Scientific, Singapore

    MATH  Google Scholar 

  8. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56:1505–1508

    Article  Google Scholar 

  9. McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61:2332–2335

    Article  Google Scholar 

  10. Wolf-Gladrow D (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, Heidelberg

    Book  MATH  Google Scholar 

  11. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond numerical mathematics and scientific computation. Oxford University Press, Oxford

    MATH  Google Scholar 

  12. Thorne DT, Michael C (2006) Lattice Boltzmann modeling: an introduction for geoscientists and engineers. 2nd edn, Springer, Heidelberg

    Google Scholar 

  13. Mohamad AA (2011) Lattice Boltzmann method fundamentals and engineering applications with computer codes. Springer, London

    MATH  Google Scholar 

  14. Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering. World Scientific, Singapore

    Book  MATH  Google Scholar 

  15. Wolf-Gladrow D (1995) A lattice Boltzmann equation for diffusion. J Stat Phys 79(5):1023–1032

    Article  MATH  Google Scholar 

  16. De Fabritiis G, Mancini A, Mansutti D, Succi S (1998) Mesoscopic models of liquid/solid phase transitions. Int J Modern Phys C 9:1405–1416

    Article  Google Scholar 

  17. Miller W (2001) The lattice Boltzmann method: a new tool for numerical simulation of the interaction of growth kinetics and melt flow. J Cryst Growth 230(1–2):263–269

    Article  Google Scholar 

  18. Miller W, Succi S (2002) A lattice Boltzmann model for anisotropic crystal growth from melt. J Stat Phys 107(1–2):173–186

    Article  MATH  Google Scholar 

  19. Miller W, Rasin I, Pimentel F (2004) Growth kinetics and melt convection. J Cryst Growth 266(1–3):283–288

    Article  Google Scholar 

  20. Medvedev D, Kassner K (2005) Lattice Boltzmann scheme for crystal growth in external flows. Phys Rev E 72(5):056703

    Article  Google Scholar 

  21. Rasin I, Miller W, Succi S (2005) Phase-field lattice kinetic scheme for the numerical simulation of dendritic growth. Phys Rev E 72(6):066705

    Article  Google Scholar 

  22. Miller W, Rasin I, Succi S (2006) Lattice Boltzmann phase-field modelling of binaryalloy solidification. Phys A Stat Mech Appl 362(1):78–83

    Article  Google Scholar 

  23. Jiaung W-S, Ho J-R, Kuo C-P (2001) Lattice Boltzmann method for the heat conduction problem with phase change. Numer Heat Transf B Fundam 39(2):167–187

    Article  Google Scholar 

  24. Chatterjee D, Chakraborty S (2005) An enthalpy-based lattice Boltzmann model for diffusion dominated solid–liquid phase transformation. Phys Lett A 341(1–4):320–330

    Article  MATH  Google Scholar 

  25. Huber C, Parmigiani A, Chopard B, Manga M, Bachmann O (2008) Lattice Boltzmann model for melting with natural convection. Int J Heat Fluid Flow 29(5):1469–1480

    Article  Google Scholar 

  26. Semma E, El Ganaoui M, Bennacer R (2007) Lattice Boltzmann method for melting/solidification problems. Comptes Rendus Mécanique 335(5–6):295–303

    Article  MATH  Google Scholar 

  27. Semma E, El Ganaoui M, Bennacer R, Mohamad AA (2008) Investigation of flows in solidification by using the lattice Boltzmann method’’. Int J Therm Sci 47(3):201–208

    Article  Google Scholar 

  28. Chakraborty S, Chatterjee D (2007) An enthalpy-based hybrid lattice-Boltzmann method for modelling solid–liquid phase transition in the presence of convective transport. J Fluid Mech 592:155–176

    Article  MATH  Google Scholar 

  29. Chatterjee D (2009) An enthalpy-based thermal lattice Boltzmann model for nonisothermal systems. EPL (Europhys Lett) 86(1):14004

    Article  Google Scholar 

  30. Chatterjee D (2010) Lattice Boltzmann simulation of incompressible transport phenomena in macroscopic solidification processes. Numer Heat Transf B Fundam 58(1):55–72

    Article  Google Scholar 

  31. Nemati H, Farhadi M, Sedighi K, Darzi AAR (2010) Lattice Boltzmann simulation of nanofluid in lid-driven cavity. Int Commun Heat Mass Transf 37(10):1528–1534

    Article  Google Scholar 

  32. Eshraghi M, Felicelli SD (2012) An implicit lattice Boltzmann model for heat conduction with phase change. Int J Heat Mass Transf 55(9–10):2420–2428

    Article  Google Scholar 

  33. Huang RZ, Wu HY, Cheng P (2013) A new lattice Boltzmann model for solid–liquid phase change. Int J Heat Mass Transf 59:295–301

    Article  Google Scholar 

  34. Chapman S, Cowling TG (1990) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Shan X (1997) Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method. Phys Rev E 55(3):2780–2788

    Article  Google Scholar 

  36. He X, Chen S, Doolen GD (1998) A novel thermal model for the lattice Boltzmann method incompressible limit. J Comput Phys 146(1):282–300

    Article  MathSciNet  MATH  Google Scholar 

  37. Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids 39(5):325–342

    Article  MathSciNet  MATH  Google Scholar 

  38. Alexiades V, Solomon AD (1993) Mathematical modeling of melting and freezing processes. Taylor & Francis, London

    Google Scholar 

  39. de Vahl Davis G (1983) Natural convection of air in a square cavity: a benchmark numerical solution. Int J Numer Methods Fluids 3(4):249–264

    Article  MATH  Google Scholar 

  40. Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part I, theoretical foundation. J Fluid Mech 271:285–309

    Article  MathSciNet  MATH  Google Scholar 

  41. Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part II, numerical results. J Fluid Mech 271:311–339

    Article  MathSciNet  MATH  Google Scholar 

  42. Jany P, Bejan A (1988) Scaling theory of melting with natural convection in an enclosure. Int J Heat Mass Transf 31(6):1221–1235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Subba Reddy Gorla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahem, A.M., El-Amin, M.F., Mohammadein, A.A. et al. Lattice Boltzmann technique for heat transport phenomena coupled with melting process. Heat Mass Transfer 53, 213–221 (2017). https://doi.org/10.1007/s00231-016-1811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1811-8

Keywords

Navigation